Skip to main content
Log in

Oxygen adsorption on ZrO2-loaded SnO2 gas sensors in humid atmosphere

  • Electronic materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Oxygen adsorption on the surface of particles plays a key role in gas sensing for SnO2-based resistive-type gas sensors in a humid atmosphere. In this study, we added an extremely small amount of ZrO2 on the SnO2 surface to activate oxygen adsorption and enhance the sensor response of a SnO2-based gas sensor in a humid atmosphere. We evaluated the oxygen adsorption properties and sensor response to 200 ppm H2 in a humid atmosphere (96%) based on variations in the measured electrical resistance. The adsorption of O and O2− ions was activated by a small loading (0.033 mol%) of ZrO2, and the resulting ZrO2–SnO2 composite nanoparticles were in the deep electron-depleted state. This led to a high sensor response of ZrO2–SnO2 to H2 in a humid atmosphere. The results demonstrate that surface modification using an extremely small amount of ZrO2 was effective in improving the response of a SnO2-based gas sensor in a humid atmosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Homepage of Figaro Engineering Inc. http://www.figaro.co.jp/en/. Accessed 22 Aug 2018

  2. Homepage of Nissha FIS, Inc. http://www.fisinc.co.jp/en/. Accessed 22 Aug 2018

  3. Yamazoe N, Fuchigami J, Kishikawa M, Seiyama T (1979) Interactions of tin oxide surface with O2, H2O and H2. Surf Sci 86:335–344. https://doi.org/10.1016/0039-6028(79)90411-4

    Article  CAS  Google Scholar 

  4. Barsan N, Weimar U (2001) Conduction model of metal oxide gas sensors. J Electroceram 7:143–167. https://doi.org/10.1023/A:1014405811371

    Article  CAS  Google Scholar 

  5. Koziej D, Bârsan N, Weimar U, Szuber J, Shimanoe K, Yamazoe N (2005) Water–oxygen interplay on tin dioxide surface: implication on gas sensing. Chem Phys Lett 410:321–323. https://doi.org/10.1016/j.cplett.2005.05.107

    Article  CAS  Google Scholar 

  6. Yue J, Jiang X, Yu A (2013) Adsorption of the OH group on SnO2 (110) oxygen bridges: a molecular dynamics and density functional theory study. J Phys Chem C 117:9962–9969. https://doi.org/10.1021/jp4022294

    Article  CAS  Google Scholar 

  7. Santarossa G, Hahn K, Baiker A (2013) Free energy and electronic properties of water adsorption on the SnO2 (110) Surface. Langmuir 29:5487–5499. https://doi.org/10.1021/la400313a

    Article  CAS  Google Scholar 

  8. Wicker S, Guiltat M, Weimar U, Hémeryck A, Barsan N (2017) Ambient humidity influence on CO detection with SnO2 gas sensing materials. A combined DRIFTS/DFT investigation. J Phys Chem C 121:25064–25073. https://doi.org/10.1021/acs.jpcc.7b06253

    Article  CAS  Google Scholar 

  9. Zhu H, Li Q, Ren Y, Gao Q, Chen J, Wang N, Deng J, Xing X (2018) A new insight into cross-sensitivity to humidity of SnO2 sensor. Small 14:1703974. https://doi.org/10.1002/smll.201703974

    Article  CAS  Google Scholar 

  10. Suematsu K, Ma N, Watanabe K, Yuasa M, Kida T, Shimanoe K (2018) Effect of humid aging on the oxygen adsorption in SnO2 gas sensors. Sensors 18:1–11. https://doi.org/10.3390/s18010254

    Article  CAS  Google Scholar 

  11. Kim HR, Haensch A, Kim ID, Barsan N, Weimar U, Lee JH (2011) The role of NiO doping in reducing the impact of humidity on the performance of SnO2-based gas sensors: synthesis strategies, and phenomenological and spectroscopic studies. Adv Funct Mater 21:4456–4463. https://doi.org/10.1002/adfm.201101154

    Article  CAS  Google Scholar 

  12. Shin J, Choi SJ, Lee I, Youn DY, Park CO, Lee JH, Tuller HL, Kim ID (2013) Thin-wall assembled SnO2 fibers functionalized by catalytic Pt nanoparticles and their superior exhaled-breath-sensing properties for the diagnosis of diabetes. Adv Funct Mater 23:2357–2367. https://doi.org/10.1002/adfm.201202729

    Article  CAS  Google Scholar 

  13. Suematsu K, Ma N, Yuasa M, Kida T, Shimanoe K (2015) Surface-modification of SnO2 nanoparticles by incorporation of Al for the detection of combustible gases in a humid atmosphere. RSC Adv 5:86347–86354. https://doi.org/10.1039/c5ra17556a

    Article  CAS  Google Scholar 

  14. Suematsu K, Sasaki M, Ma N, Yuasa M, Shimanoe K (2016) Antimony-doped tin dioxide gas sensors exhibiting high stability in the sensitivity to humidity changes. ACS Sens 1:913–920. https://doi.org/10.1021/acssensors.6b00323

    Article  CAS  Google Scholar 

  15. Zito CA, Perfecto TM, Volanti DP (2017) Palladium-loaded hierarchical flower-like tin dioxide structure as chemosensor exhibiting high ethanol response in humid conditions. Adv Mater Interfaces 4:1–11. https://doi.org/10.1002/admi.201700847

    Article  CAS  Google Scholar 

  16. Kwak CH, Kim TH, Jeong SY, Yoon JW, Kim JS, Lee JH (2018) Humidity-independent oxide semiconductor chemiresistors using terbium-doped SnO2 Yolk–Shell spheres for real-time breath analysis. ACS Appl Mater Interfaces 10:18886–18894. https://doi.org/10.1021/acsami.8b04245

    Article  CAS  Google Scholar 

  17. Rogers PH, Benkstein KD, Semancik S (2012) Machine learning applied to chemical analysis: sensing multiple biomarkers in simulated breath using a temperature-pulsed electronic-nose. Anal Chem 84:9774–9781. https://doi.org/10.1021/ac301687j

    Article  CAS  Google Scholar 

  18. Choi SJ, Jang BH, Lee SJ, Min BK, Rothschild A, Kim ID (2014) Selective detection of acetone and hydrogen sulfide for the diagnosis of diabetes and halitosis using SnO2 nanofibers functionalized with reduced graphene oxide nanosheets. ACS Appl Mater Interfaces 6:2588–2597. https://doi.org/10.1021/am405088q

    Article  CAS  Google Scholar 

  19. Güntner AT, Koren V, Chikkadi K, Righettoni M, Pratsinis SE (2016) E-nose sensing of low-ppb formaldehyde in gas mixtures at high relative humidity for breath screening of lung cancer? ACS Sens 1:528–535. https://doi.org/10.1021/acssensors.6b00008

    Article  CAS  Google Scholar 

  20. Zito CA, Perfecto TM, Volanti DP (2017) Impact of reduced graphene oxide on the ethanol sensing performance of hollow SnO2 nanoparticles under humid atmosphere. Sens Actuators B 244:466–474. https://doi.org/10.1016/j.snb.2017.01.015

    Article  CAS  Google Scholar 

  21. Korotchenkov G, Brynzari V, Dmitriev S (1999) Electrical behavior of SnO2 thin films in humid atmosphere. Sens Actuators B 54:197–201. https://doi.org/10.1016/S0925-4005(99)00016-7

    Article  CAS  Google Scholar 

  22. Großmann K, Wicker S, Weimar U, Barsan N (2013) Impact of Pt additives on the surface reactions between SnO2, water vapour, CO and H2; An operando investigation. Phys Chem Chem Phys 15:19151–19158. https://doi.org/10.1039/c3cp52782d

    Article  CAS  Google Scholar 

  23. Ma N, Suematsu K, Yuasa M, Kida T, Shimanoe K (2015) Effect of water vapor on Pd-loaded SnO2 nanoparticles gas sensor. ACS Appl Mater Interfaces 7:5863–5869. https://doi.org/10.1021/am509082w

    Article  CAS  Google Scholar 

  24. Ma N, Suematsu K, Yuasa M, Shimanoe K (2015) Pd size effect on the gas sensing properties of Pd-loaded SnO2 in humid atmosphere. ACS Appl Mater Interfaces 7:15618–15625. https://doi.org/10.1021/acsami.5b04380

    Article  CAS  Google Scholar 

  25. Choi KI, Kim HJ, Kang YC, Lee JH (2014) Ultraselective and ultrasensitive detection of H2S in highly humid atmosphere using CuO-loaded SnO2 hollow spheres for real-time diagnosis of halitosis. Sens Actuators B 194:371–376. https://doi.org/10.1016/j.snb.2013.12.111

    Article  CAS  Google Scholar 

  26. Yoon JW, Kim JS, Kim TH, Hong YJ, Kang YC, Lee JH (2016) A new strategy for humidity independent oxide chemiresistors: dynamic self-refreshing of In2O3 sensing surface assisted by layer-by-layer coated CeO2 nanoclusters. Small 12:4229–4240. https://doi.org/10.1002/smll.201601507

    Article  CAS  Google Scholar 

  27. Yamazoe N, Shimanoe K (2008) Roles of shape and size of component crystals in semiconductor gas sensors. J Electrochem Soc 155:J93–J98. https://doi.org/10.1149/1.2832662

    Article  CAS  Google Scholar 

  28. Yamazoe N, Suematsu K, Shimanoe K (2012) Extension of receptor function theory to include two types of adsorbed oxygen for oxide semiconductor gas sensors. Sens Actuators B 163:128–135. https://doi.org/10.1016/j.snb.2012.01.020

    Article  CAS  Google Scholar 

  29. Suematsu K, Yuasa M, Kida T, Yamazoe N, Shimanoe K (2014) Determination of oxygen adsorption species on SnO2: exact analysis of gas sensing properties using a sample gas pretreatment system. J Electrochem Soc 161:B123–B128. https://doi.org/10.1149/2.004406jes

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the Japan Society for the Promotion of Science (JSPS) Grants-in-Aid for Scientific Research (KAKENHI), Grant Numbers JP16H04219 and JP17K17941. We would like to thank Editage (www.editage.jp) for English language editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koichi Suematsu.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suematsu, K., Uchino, H., Mizukami, T. et al. Oxygen adsorption on ZrO2-loaded SnO2 gas sensors in humid atmosphere. J Mater Sci 54, 3135–3143 (2019). https://doi.org/10.1007/s10853-018-3020-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-3020-y

Keywords

Navigation