Skip to main content

Advertisement

Log in

Chemical pressure in the correlated narrow-gap semiconductor FeGa3

  • Electronic materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In the correlated narrow-gap semiconductor FeGa3, 1.25 Ga atoms per formula unit can be replaced by Al atoms providing chemical pressure of ~ 1.2 GPa. The resulting FeGa3−yAly solid solution (0 ≤ y ≤ 1.25) crystallizes in the parent structure type with Al atoms preferentially occupying one of the two crystallographic positions of Ga. As revealed by electrical resistivity and heat capacity measurements, FeGa3−yAly exhibits nonmetallic properties for y = 0.937(9) similar to the parent compound FeGa3 demonstrating that the electronic structure is not significantly altered by the chemical pressure. This result is corroborated by the electronic structure calculations, which show that the band gap is only slightly reduced in FeGa3−yAly for y = 1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Häussermann U, Boström M, Viklund P, Rapp Ö, Björnängen T (2002) FeGa3 and RuGa3: semiconducting intermetallic compounds. J Solid State Chem 165:94–99

    Article  Google Scholar 

  2. Yannello VJ, Fredrickson DC (2015) Generality of the 18-n rule: intermetallic structural chemistry explained through isolobal analogies to transition metal complexes. Inorg Chem 54:11385–11398

    Article  CAS  Google Scholar 

  3. Arita M, Shimada K, Utsumi Y, Morimoto O, Sato H, Namatame H, Taniguchi M, Hadano Y, Takabatake T (2011) Electronic structure of a narrow-gap semiconductor FeGa3 investigated by photoemission and inverse photoemission spectroscopies. Phys Rev B 83(245116):5

    Google Scholar 

  4. Tsujii N, Yamaoka H, Matsunami M, Eguchi R, Ishida Y, Senba Y, Ohashi H, Shin S, Furubayashi T, Abe H, Kitazawa H (2008) Observation of energy gap in FeGa3. J Phys Soc Jpn 77(024705):5

    Google Scholar 

  5. Hadano Y, Narazu S, Avila MA, Onimaru T, Takabatake T (2009) Thermoelectric and magnetic properties of a narrow-gap semiconductor FeGa3. J Phys Soc Jpn 78(013702):4

    Google Scholar 

  6. Imai Y, Watanabe A (2006) Electronic structures of semiconducting FeGa3, RuGa3, OsGa3 and RuIn3 with the CoGa3- or the FeGa3-type structure. Intermetallics 14:722–728

    Article  CAS  Google Scholar 

  7. Yin Z, Pickett WE (2010) Evidence for a spin singlet state in the intermetallic semiconductor FeGa3. Phys Rev B 82(155202):6

    Google Scholar 

  8. Gamza MB, Tomczak JM, Brown C, Puri A, Kotliar G, Aronson MC (2014) Electronic correlations in FeGa3 and the effect of hole doping on its magnetic properties. Phys Rev B 89(195102):19

    Google Scholar 

  9. Umeo K, Hadano Y, Narazu S, Onimaru T, Avila MA, Takabatake T (2012) Ferromagnetic instability in a doped band gap semiconductor FeGa3. Phys Rev B 86(144421):7

    Google Scholar 

  10. Verchenko VYu, Likhanov MS, Kirsanova MA, Gippius AA, Tkachev AV, Gervits NE, Galeeva AV, Büttgen N, Krätschmer W, Lue CS, Okhotnikov K, Shevelkov AV (2012) Intermetallic solid solution Fe1-xCoxGa3: synthesis, structure, NQR study and electronic band structure calculations. J Solid State Chem 194:361–368

    Article  CAS  Google Scholar 

  11. Gippius AA, Verchenko VYu, Tkachev AV, Gervits NE, Lue CS, Tsirlin AA, Büttgen N, Krätschmer W, Baenitz M, Shatruk M, Shevelkov AV (2014) Interplay between localized and itinerant magnetism in co-substituted FeGa3. Phys Rev B 89(104426):8

    Google Scholar 

  12. Wagner-Reetz M, Kasinathan D, Schnelle W, Cardoso-Gil R, Rosner H, Grin Y (2014) Phonon-drag effect in FeGa3. Phys Rev B 90(195206):11

    Google Scholar 

  13. Tomczak JM (2018) Thermoelectricity in correlated narrow-gap semiconductors. J Phys Condens Matter 30:183001, 70

    Article  Google Scholar 

  14. Meyer H, Eliner M (1997) On the solubility of aluminium in the intermetallic compound CoGa3. J Alloys Compd. 261:250–253

    Article  CAS  Google Scholar 

  15. Mondal D, Kamal C, Banik S, Bhakar A, Kak A, Das G, Reddy VR, Chakrabarti A, Ganguli T (2016) Structural and electronic properties of Fe(AlxGa1-x)3 system. J Appl Phys 120(165102):6

    Google Scholar 

  16. Petříček V, Dušek M, Palatinus L (2014) Crystallographic computing system JANA2006: general features. Z Kristallogr 229:345–352

    Google Scholar 

  17. Koepernik K, Eschrig H (1999) Full-potential nonorthogonal local-orbital minimum-basis band-structure scheme. Phys Rev B 59(1743):15

    Google Scholar 

  18. Perdew JP, Wang Y (1992) Accurate and simple analytic representation of the electron-gas correlation energy. Phys Rev B 45(13244):6

    Google Scholar 

  19. Blöchl PE, Jepsen O, Andersen OK (1994) Improved tetrahedron method for Brillouin-zone integrations. Phys Rev B 49(16223):12

    Google Scholar 

  20. Mondal D, Srihari V, Kamal C, Poswal H, Garg AB, Thamizhavel A, Banik S, Chakrabarti A, Ganguli T, Sharma SM (2017) High-pressure studies on the properties of FeGa3: role of on-site Coulomb correlation. Phys Rev B 95(134105):11

    Google Scholar 

  21. Osorio-Guillén JM, Larrauri-Pazarro YD, Dalpian GM (2012) Pressure-induced metal-insulator transition and absence of magnetic order in FeGa3 from a first-principles study. Phys Rev B 86(235202):6

    Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Sergey Kazakov for his help with the PXRD experiments. The work in Moscow was supported by the Russian Foundation for Basic Research, Grant No. 17-03-00111. V.Yu.V. also appreciates the support from the European Regional Development Fund, project TK134. A.A.T. is grateful for the financial support by the Federal Ministry for Education and Research under the Sofja Kovalevskaya Award of the Alexander von Humboldt Foundation. We acknowledge the use of the Bruker D8 Advance X-ray powder diffractometer purchased under the Lomonosov MSU program of development.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valeriy Yu. Verchenko.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verchenko, V.Y., Zubtsovskii, A.O., Tsirlin, A.A. et al. Chemical pressure in the correlated narrow-gap semiconductor FeGa3. J Mater Sci 54, 2371–2378 (2019). https://doi.org/10.1007/s10853-018-3012-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-3012-y

Keywords

Navigation