Skip to main content

Advertisement

Log in

Citrate-based fluorophores in polymeric matrix by easy and green in situ synthesis for full-band UV shielding and emissive transparent display

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Developing easy and green strategy to prepare functional materials with outstanding properties based on naturally abundant and environmentally friendly raw materials is highly desirable for sustainable development. Herein, an easy and green strategy was reported to in situ synthesize and disperse citrate-based fluorophores (CFs) in polyvinyl alcohol (PVA) matrix. By a simple heating treatment of the mixture aqueous solution of citric acid/cysteine/PVA, CF–PVA blends were obtained in the form of homogeneous transparent films or coatings. Due to the effective UV absorption of CFs, CF–PVA film and coating exhibited full-band blocking of UV irradiation while still allowing high transmission of visible light. Protection by CF–PVA film and coating effectively reduced UV-induced rhodamine B degradation and cell death. Furthermore, the down-conversion property of CF–PVA coating enables conversion of invisible UV irradiation into visible blue light emission, and we further demonstrated the application of CF–PVA coating for fabricating emissive transparent display. Given the abundant and environmentally friendly raw materials, easy and green preparation, excellent UV-blocking, and converting properties, we believe that the CF–PVA blends are promising for applications in UV shielding, transparent display, and energy harvesting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Zayat M, Garcia-Parejo P, Levy D (2007) Preventing UV-light damage of light sensitive materials using a highly protective UV-absorbing coating. Chem Soc Rev 36:1270–1281

    Article  CAS  Google Scholar 

  2. Cui H, Zayat M, Parejo PG, Levy D (2008) Highly efficient inorganic transparent UV-protective thin-film coating by low temperature sol-gel procedure for application on heat-sensitive substrates. Adv Mater 20:65–68

    Article  CAS  Google Scholar 

  3. Paul ND, Gwynn-Jones D (2003) Ecological roles of solar UV radiation: towards an integrated approach. Trends Ecol Evol 18:48–55

    Article  Google Scholar 

  4. Smith RC, Prézelin BB, Baker KS, Bidigare RR, Boucher NP, Coley T, Karentz D, MacIntyre S, Matlick HA, Menzies D, Ondrusek M, Wan Z, Waters KJ (1992) Ozone depletion: ultraviolet radiation and phytoplankton biology in Antarctic waters. Science 255:952–959

    Article  CAS  Google Scholar 

  5. de Gruijl FR (1999) Skin cancer and solar UV radiation. Eur J Cancer 35:2003–2009

    Article  Google Scholar 

  6. Paul ND (2000) Stratospheric ozone depletion, UV-B radiation and crop disease. Environ Pollut 108:343–355

    Article  CAS  Google Scholar 

  7. Dransfield GP (2000) Inorganic sunscreens. Radiat Prot Dosim 91:271–273

    Article  CAS  Google Scholar 

  8. Smirnov JRC, Calvo ME, Míguez H (2013) Selective UV reflecting mirrors based on nanoparticle multilayers. Adv Funct Mater 23:2805–2811

    Article  CAS  Google Scholar 

  9. Núñez-Lozano R, Pimentel B, Castro-Smirnov JR, Calvo ME, Míguez H, de la Cueva-Méndez G (2015) Biocompatible films with tailored spectral response for prevention of DNA damage in skin cells. Adv Healthc Mater 4:1944–1948

    Article  Google Scholar 

  10. Cockell CS, Knowland J (1999) Ultraviolet radiation screening compounds. J Biol Rev 74:311–345

    Article  CAS  Google Scholar 

  11. Gago-Ferrero P, Díaz-Cruz MS, Barceló D (2012) An overview of UV-absorbing compounds (organic UV filters) in aquatic biota. Anal Bionanal Chem 404:2597–2610

    Article  CAS  Google Scholar 

  12. Jurado A, Gago-Ferrero P, Vàzquez-Suñé E, Carrera J, Pujades E, Díaz-Cruz MS, Barceló D (2014) Urban groundwater contamination by residues of UV filters. J Hazard Mater 271:141–149

    Article  CAS  Google Scholar 

  13. Zhang Y, Wang X, Liu Y, Song S, Liu D (2012) Highly transparent bulk PMMA/ZnO nanocomposites with bright visible luminescence and efficient UV-shielding capability. J Mater Chem 22:11971–11977

    Article  CAS  Google Scholar 

  14. Aklalouch M, Calleja A, Granados X, Ricart S, Boffa V, Ricci F, Puig T, Obradors X (2014) Hybrid sol-gel layers containing CeO2 nanoparticles as UV-protection of plastic lenses for concentrated photovoltaics. Sol Energy Mater Sol Cells 120:175–182

    Article  CAS  Google Scholar 

  15. Xie S, Zhao J, Zhang B, Wang Z, Ma H, Yu C, Yu M, Li L, Li J (2015) Graphene oxide transparent hybrid film and its ultraviolet shielding property. ACS Appl Mater Interfaces 7:17558–17564

    Article  CAS  Google Scholar 

  16. Wang Y, Li T, Ma P, Bai H, Xie Y, Chen M, Dong W (2016) Simultaneous enhancements of UV-shielding properties and photostability of poly(vinyl alcohol) via incorporation of sepia eumelanin. ACS Sustain Chem Eng 4:2252–2258

    Article  Google Scholar 

  17. Subramani NK, Nagaraj SK, Shivanna S, Siddaramaiah H (2016) Highly flexible and visibly transparent poly(vinyl alcohol)/calcium zincate nanocomposite films for UVA shielding applications as assessed by novel ultraviolet photon induced fluorescence quenching. Macromolecules 49:2791–2801

    Article  CAS  Google Scholar 

  18. Sirviö JA, Visanko M, Heiskanen JP, Liimatainen H (2016) UV-absorbing cellulose nanocrystals as functional reinforcing fillers in polymer nanocomposite films. J Mater Chem A 4:6368–6375

    Article  Google Scholar 

  19. Hess SC, Permatasari FA, Fukazawa H, Schneider EM, Balgis R, Ogi T, Okuyama K, Stark WJ (2017) Direct synthesis of carbon quantum dots in aqueous polymer solution: one-pot reaction and preparation of transparent UV-blocking films. J Mater Chem A 5:5187–5194

    Article  CAS  Google Scholar 

  20. Goodship V, Jacobs DK (2009) Polyvinyl alcohol: materials, processing and applications. Rapra review reports. Smithers Rapra Technology, Shrewsbury

    Google Scholar 

  21. Yang J, Zhang Y, Gautam S, Liu L, Dey J, Chen W, Mason RP, Serrano CA, Schug KA, Tang L (2009) Development of aliphatic biodegradable photoluminescent polymers. Proc Natl Acad Sci USA 106:10086–10091

    Article  CAS  Google Scholar 

  22. Kasprzyk W, Bednarz S, Bogdał D (2013) Luminescence phenomena of biodegradable photoluminescent poly(diol citrates). Chem Commun 49:6445–6447

    Article  CAS  Google Scholar 

  23. Xie Z, Kim JP, Cai Q, Zhang Y, Guo J, Dhami RS, Li L, Kong B, Su Y, Schug KA, Yang J (2017) Synthesis and characterization of citrate-based fluorescent small molecules and biodegradable polymers. Acta Biomater 50:361–369

    Article  CAS  Google Scholar 

  24. Chen H, Yan X, Feng Q, Zhao P, Xu X, Ng DHL, Bian L (2017) Citric acid/cysteine-modified cellulose-based materials: Green preparation and their applications in anticounterfeiting, chemical sensing, and UV shielding. ACS Sustain Chem Eng 5:11387–11394

    Article  CAS  Google Scholar 

  25. Sionkowska A (2006) The influence of UV light on collagen/poly(ethylene glycol) blends. Polym Degrad Stab 91:305–312

    Article  CAS  Google Scholar 

  26. ASTM-D3359-08 (2008) Standard test methods for measuring adhesion by tape test. ASTM International, West Conshohocken

    Google Scholar 

  27. Wang X, Zhou S, Wu L (2012) Stability, UV shielding properties, and light conversion behavior of Eu (BMDM)3@polysiloxane nanoparticles in water and polyurethane films. Mater Chem Phys 137:644–651

    Article  CAS  Google Scholar 

  28. Thomas LV, Arun U, Remya S, Nair PD (2009) A biodegradable and biocompatible PVA–citric acid polyester with potential applications as matrix for vascular tissue engineering. J Mater Sci Mater Med 20:259–269

    Article  Google Scholar 

  29. Bolto B, Tran T, Hoang M, Xie Z (2009) Crosslinked poly(vinyl alcohol) membranes. Prog Polym Sci 34:969–981

    Article  CAS  Google Scholar 

  30. Tsuchiya Y, Sumi K (1969) Thermal decomposition products of poly(vinyl alcohol). J Polym Sci Part A-1 Polym Chem 7:3151–3158

    Article  CAS  Google Scholar 

  31. Shi L, Yang JH, Zhang HB, Chen YM, Yang SC, Wu C, Zeng H, Yoshihito O, Zhang Q (2016) Carbon dots with high fluorescence quantum yield: the fluorescence originates from organic fluorophores. Nanoscale 8:14374–14378

    Article  CAS  Google Scholar 

  32. Sigel GH Jr (1973) Ultraviolet spectra of silicate glasses: a review of some experimental evidence. J Non Cryst Solids 13:372–398

    Article  Google Scholar 

  33. Mallakpour S, Barati A (2011) Efficient preparation of hybrid nanocomposite coatings based on poly(vinyl alcohol) and silane coupling agent modified TiO nanoparticles. Prog Org Coat 71:391–398

    Article  CAS  Google Scholar 

  34. Wang Y, Su J, Li T, Ma P, Bai H, Xie Y, Chen M, Dong W (2017) A Novel UV-shielding and transparent polymer film: when bio-inspired dopamine-melanin hollow nanoparticles join polymer. ACS Appl Mater Interfaces 9:36281–36289

    Article  CAS  Google Scholar 

  35. Wang Y, Xiang C, Li T, Ma P, Bai H, Xie Y, Chen M, Dong W (2017) Enhanced thermal stability and UV-shielding properties of poly(vinyl alcohol) based on Esculetin. J Phys Chem B 121:1148–1157

    Article  CAS  Google Scholar 

  36. Gilges M, Kleemiss MH, Schomburg G (1994) Capillary zone electrophoresis separations of basic and acidic proteins using poly(vinyl alcohol) coatings in fused silica capillaries. Anal Chem 66:2038–2046

    Article  CAS  Google Scholar 

  37. Linsebigler AL, Lu G, Yates JT Jr (1995) Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chem Rev 95:735–758

    Article  CAS  Google Scholar 

  38. Su CW, Chen MY (2014) Polymer-dispersed liquid crystal applied in active-matrix transparent display. J Disp Technol 10:683–687

    Article  CAS  Google Scholar 

  39. Bulovic V, Gu G, Burrows PE, Forrest SR, Thompson ME (1996) Transparent light-emitting devices. Nature 318:29

    Article  Google Scholar 

  40. Park SHK, Hwang CS, Ryu M, Yang S, Byun C, Shin J, Lee JI, Lee K, Oh MS, Im S (2009) Transparent and photo-stable ZnO thin-film transistors to drive an active matrix organic-light-emitting-diode display panel. Adv Mater 21:678–682

    Article  CAS  Google Scholar 

  41. Wager JF (2003) Transparent electronics. Science 300:1245–1246

    Article  CAS  Google Scholar 

  42. Teprovich JA, Colón-Mercado H, Washington AL II, Ward PA, Greenway S, Missimer DM, Hartman H, Velten J, Christian JH, Zidan R (2015) Bi-functional Li2B12H12 for energy storage and conversion applications: solid-state electrolyte and luminescent down-conversion dye. J Mater Chem A 3:22853–22859

    Article  CAS  Google Scholar 

  43. Cheng B, Sun L, Yu G, Sun TX (2017) A novel emissive projection display (EPD) on transparent phosphor screen. Proc SPIE 10117:101170N

    Article  Google Scholar 

  44. Kim JP, Xie Z, Creer M, Liu Z, Yang J (2017) Citrate-based fluorescent materials for low-cost chloride sensing in the diagnosis of cystic fibrosis. Chem Sci 8:550–558

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support from the National Natural Science Foundation of China (Grant Nos. 51773120 and 51802201), the Natural Science Foundation of Guangdong (Grant Nos. 2016A030313050 and 2017A030310045), the Science and Technology Project of Shenzhen City (Grant Nos. JCYJ20170412105034748, CYZZ20150827160341635, and ZDSYS201507141105130), the Top Talent Launch Scientific Research Projects of Shenzhen (827-000133), and Undergraduate Innovation and Entrepreneurship training program (Grant No. 201810590053). This research is also supported by General Research Fund grant from the Research Grants Council of Hong Kong (Project No. 14220716). The authors thank Prof. Liming Bian (Department of Biomedical Engineering, The Chinese University of Hong Kong) for the helpful discussion on cell test and material supply.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shaojun Chen or Xiaohui Yan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 4160 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, H., Li, R., Xu, X. et al. Citrate-based fluorophores in polymeric matrix by easy and green in situ synthesis for full-band UV shielding and emissive transparent display. J Mater Sci 54, 1236–1247 (2019). https://doi.org/10.1007/s10853-018-2933-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-2933-9

Keywords

Navigation