Skip to main content
Log in

Facile construction of PCNF&CNT composite material by one-step simultaneous carbonization and chemical vapor deposition

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Herein, the composite carbon material of porous carbon nanofiber and carbon nanotube is developed via electro-blown spinning and one-step simultaneous carbonization and chemical vapor deposition without injecting every kind of reaction gas in proportion and removing catalyst in secondary processing. The carbon nanotubes are uniformly growing on carbon skeleton which dramatically improve the performances such as specific surface area (from 334.066 to 644.589 m2 g−1) and electrical conductivity (from 42.22 to 146.20 S cm−1) comparing with porous carbon nanofibers. The different spinning parameters are investigated to optimize parameters, and the porous carbon nanofiber and carbon nanotube are studied and used as electrode for supercapacitors. The results showed that it possesses excellent electrochemical properties, including high specific discharge capacity (216.5 F g−1 at 1.0 A g−1) and good cycle performance (retains ~ 98.68% after 5000 cycles). Moreover, the convenient one-step prepared method special throughout pores structure and superior performance provide a novel approach for designing new types of carbon composite materials which also possess potential application prospect in fields of catalyst, adsorption, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Hou J, Jiang K, Tahir M, Wu X, Idrees F, Shen M, Cao C (2017) Tunable porous structure of carbon nanosheets derived from puffed rice for high energy density supercapacitors. J Power Sources 371:148–155

    Article  CAS  Google Scholar 

  2. Zha D, Sun H, Fu Y, Ouyang X, Wang X (2017) Acetate anion-intercalated nickel-cobalt layered double hydroxide nanosheets supported on Ni foam for high-performance supercapacitors with excellent long-term cycling stability. Electrochim Acta 236:18–27

    Article  CAS  Google Scholar 

  3. Zha D, Fu Y, Zhang L, Zhu J, Wang X (2018) Design and fabrication of highly open nickel cobalt sulfide nanosheets on Ni foam for asymmetric supercapacitors with high energy density and long cycle-life. J Power Sources 378:31–39

    Article  CAS  Google Scholar 

  4. Cai Y, Luo Y, Dong H, Zhao X, Xiao Y, Liang Y, Hu H, Liu Y, Zheng M (2017) Hierarchically porous carbon nanosheets derived from Moringa oleifera stems as electrode material for high-performance electric double-layer capacitors. J Power Sources 353:260–269

    Article  CAS  Google Scholar 

  5. Sun L, Wang X, Wang Y, Zhang Q (2017) Roles of carbon nanotubes in novel energy storage devices. Carbon 122:462–474

    Article  CAS  Google Scholar 

  6. Ni J, Li Y (2016) Carbon nanomaterials in different dimensions for electrochemical energy storage. Adv Energy Mater 6:1600278

    Article  Google Scholar 

  7. Liu P, Yan J, Gao X, Huang Y, Zhang Y (2018) Construction of layer-by-layer sandwiched graphene/polyaniline nanorods/carbon nanotubes heterostructures for high performance supercapacitors. Electrochim Acta 272:77–87

    Article  CAS  Google Scholar 

  8. An G-H, Ahn H-J, Hong W-K (2015) Electrochemical properties for high surface area and improved electrical conductivity of platinum-embedded porous carbon nanofibers. J Power Sources 274:536–541

    Article  CAS  Google Scholar 

  9. Zha D, Xiong P, Wang X (2015) Strongly coupled manganese ferrite/carbon black/polyaniline hybrid for low-cost supercapacitors with high rate capability. Electrochim Acta 185:218–228

    Article  CAS  Google Scholar 

  10. Liu Y, Zhou J, Chen L, Zhang P, Fu W, Zhao H, Ma Y, Pan X, Zhang Z, Han W, Xie E (2015) Highly flexible freestanding porous carbon nanofibers for electrodes materials of high-performance all-carbon supercapacitors. ACS Appl Mater Interfaces 7:23515–23520

    Article  CAS  Google Scholar 

  11. Liu Y, Zhang N, Jiao L, Chen J (2015) Tin nanodots encapsulated in porous nitrogen-doped carbon nanofibers as a free-standing anode for advanced sodium-ion batteries. Adv Mater 27:6702–6707

    Article  CAS  Google Scholar 

  12. Li Z, Zhang J-w, L-g Yu, Zhang J-w (2017) Electrospun porous nanofibers for electrochemical energy storage. J Mater Sci 52:6173–6195. https://doi.org/10.1007/s10853-017-0794-2

    Article  CAS  Google Scholar 

  13. Liu P, Huang Y, Yan J, Yang Y, Zhao Y (2016) Construction of CuS nanoflakes vertically aligned on magnetically decorated graphene and their enhanced microwave absorption properties. ACS Appl Mater Interfaces 8:5536–5546

    Article  CAS  Google Scholar 

  14. Xia L, Zhang X, Yang Y, Zhang J, Zhong B, Zhang T, Wang H (2018) Enhanced electromagnetic wave absorption properties of laminated SiC NW -C f/lithium–aluminum–silicate (LAS) composites. J Alloys Compd 748:154–162

    Article  CAS  Google Scholar 

  15. Ju J, Kang W, Li L, He H, Qiao C, Cheng B (2016) Preparation of poly (tetrafluoroethylene) nanofiber film by electro-blown spinning method. Mater Lett 171:236–239

    Article  CAS  Google Scholar 

  16. Cheng L, He J, Jin Y, Chen H, Chen M (2015) Single-walled carbon nanotube embedded porous carbon nanofiber with enhanced electrochemical capacitive performance. Mater Lett 144:123–126

    Article  CAS  Google Scholar 

  17. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58

    Article  CAS  Google Scholar 

  18. Ajayan PM (1999) Nanotubes from carbon. Chem Rev 99:1787–1800

    Article  CAS  Google Scholar 

  19. Park S-H, Jung H-R, Kim B-K, Lee W-J (2012) MWCNT/mesoporous carbon nanofibers composites prepared by electrospinning and silica template as counter electrodes for dye-sensitized solar cells. J Photochem Photobiol, A 246:45–49

    Article  CAS  Google Scholar 

  20. Kim YK, Cha SI, Hong SH, Jeong YJ (2012) A new hybrid architecture consisting of highly mesoporous CNT/carbon nanofibers from starch. J Mater Chem 22:20554–20560

    Article  CAS  Google Scholar 

  21. Zhang T, Xiao B, Zhou P, Xia L, Wen G, Zhang H (2017) Porous-carbon-nanotube decorated carbon nanofibers with effective microwave absorption properties. Nanotechnology 28:355708

    Article  Google Scholar 

  22. Guo Q, Zhou X, Li X, Chen S, Seema A, Greiner A, Hou H (2009) Supercapacitors based on hybrid carbon nanofibers containing multiwalled carbon nanotubes. J Mater Chem 19:2810–2816

    Article  CAS  Google Scholar 

  23. Zeng L, Pan F, Li W, Jiang Y, Zhong X, Yu Y (2014) Free-standing porous carbon nanofibers–sulfur composite for flexible Li–S battery cathode. Nanoscale 6:9579–9587

    Article  CAS  Google Scholar 

  24. Kong Y, Qiu T, Qiu J (2013) Fabrication of novel micro–nano carbonous composites based on self-made hollow activated carbon fibers. Appl Surf Sci 265:352–357

    Article  CAS  Google Scholar 

  25. Liu Y, Ma J, Lu T, Pan L (2016) Electrospun carbon nanofibers reinforced 3D porous carbon polyhedra network derived from metal–organic frameworks for capacitive deionization. Sci Rep 6:32784

    Article  CAS  Google Scholar 

  26. Me A Oberlin (1976) Filamentous growth of carbon through benzene decomposition. J Cryst Growth 32:335–349

    Article  Google Scholar 

  27. Baker RTK (1989) Catalytic growth of carbon filaments. Carbon 27:315–323

    Article  CAS  Google Scholar 

  28. Puts GJ, Crouse PL (2014) The influence of inorganic materials on the pyrolysis of polytetrafluoroethylene. Part 1: the sulfates and fluorides of Al, Zn, Cu, Ni Co, Fe and Mn. J Fluorine Chem 168:260–267

    Article  CAS  Google Scholar 

  29. Ju J, Kang W, Deng N, Li L, Zhao Y, Ma X, Fan L, Cheng B (2017) Preparation and characterization of PVA-based carbon nanofibers with honeycomb-like porous structure via electro-blown spinning method. Microporous Microporous Mater 239:416–425

    Article  CAS  Google Scholar 

  30. Alireza Badiei MA, Karimi Mahdi, Zarabadi-poor Pezhman (2014) Carbon nanotubes synthesis by chemical vapor deposition of methane over Zn–Fe mixed catalysts supported on alumina. J Nanostruct 4:259–265

    Google Scholar 

  31. Atchudan R, Pandurangan A, Somanathan T (2009) Bimetallic mesoporous materials for high yield synthesis of carbon nanotubes by chemical vapour deposition techniques. J. Mol. Catal. A-Chem. 309:146–152

    Article  CAS  Google Scholar 

  32. Deck CP, Vecchio K (2006) Prediction of carbon nanotube growth success by the analysis of carbon–catalyst binary phase diagrams. Carbon 44:267–275

    Article  CAS  Google Scholar 

  33. Ummul Khair F, Ahmed Jalal U, Uemura K, Gotoh Y (2010) Fabrication of carbon fibers from electrospun poly(vinyl alcohol) nanofibers. Text Res J 81:659–672

    Article  Google Scholar 

  34. Zhao M-Q, Liu X-F, Zhang Q, Tian G-L, Huang J-Q, Zhu W, Wei F (2012) Graphene/single-walled carbon nanotube hybrids: one-step catalytic growth and applications for high-rate Li–S batteries. ACS Nano 6:10759–10769

    Article  CAS  Google Scholar 

  35. Lindemer MD, Advani SG, Prasad AK (2016) Hydrogen production via the heterogeneous hydrolysis of Zn vapor under a temperature gradient: modeling and efficiency analysis. Int J Hydrog Energy 41:10557–10567

    Article  CAS  Google Scholar 

  36. Cao L, Z-h Li YGu, Li D-h, K-m Su, Yang D-j, Cheng B-w (2017) Rational design of N-doped carbon nanobox-supported Fe/Fe2N/Fe3C nanoparticles as efficient oxygen reduction catalysts for Zn–air batteries. J Mater Chem A 5:11340–11347

    Article  CAS  Google Scholar 

  37. Fatema UK, Tomizawa C, Harada M, Gotoh Y (2011) Iodine-aided fabrication of hollow carbon fibers from solid poly(vinyl alcohol) fibers. Carbon 49:2158–2161

    Article  CAS  Google Scholar 

  38. Xu X, Liu Y, Wang M, Zhu C, Lu T, Zhao R, Pan L (2016) Hierarchical hybrids with microporous carbon spheres decorated three-dimensional graphene frameworks for capacitive applications in supercapacitor and deionization. Electrochim Acta 193:88–95

    Article  CAS  Google Scholar 

  39. Zuliani JE, Tong S, Kirk DW, Jia CQ (2015) Isolating the effect of pore size distribution on electrochemical double-layer capacitance using activated fluid coke. J Power Sources 300:190–198

    Article  CAS  Google Scholar 

  40. Zhang L, Jiang Y, Wang L, Zhang C, Liu S (2016) Hierarchical porous carbon nanofibers as binder-free electrode for high-performance supercapacitor. Electrochim Acta 196:189–196

    Article  CAS  Google Scholar 

  41. Zhao Y, Kang W, Li L, Yan G, Wang X, Zhuang X, Cheng B (2016) Solution blown silicon carbide porous nanofiber membrane as electrode materials for supercapacitors. Electrochim Acta 207:257–265

    Article  CAS  Google Scholar 

  42. Ju J, Zhao H, Kang W, Tian N, Deng N, Cheng B (2017) Designing MnO2 and carbon composite porous nanofiber structure for supercapacitor applications. Electrochim Acta 258:116–123

    Article  CAS  Google Scholar 

  43. Wang J, Tang J, Xu Y, Ding B, Chang Z, Wang Y, Hao X, Dou H, Kim JH, Zhang X, Yamauchi Y (2016) Interface miscibility induced double-capillary carbon nanofibers for flexible electric double layer capacitors. Nano Energy 28:232–240

    Article  CAS  Google Scholar 

  44. Wang B, Lu G, Luo Q-P, Wang T (2016) Free-standing porous carbon nanofiber networks from electrospinning polyimide for supercapacitors. J Nanomater 2016:4305437

    Google Scholar 

  45. Simotwo SK, Chinnam PR, Wunder SL, Kalra V (2017) Highly durable, self-standing solid-state supercapacitor based on an ionic liquid-rich ionogel and porous carbon nanofiber electrodes. ACS Appl Mater Interfaces 9:33749–33757

    Article  CAS  Google Scholar 

  46. Perananthan S, Bonso JS, Ferraris JP (2016) Supercapacitors utilizing electrodes derived from polyacrylonitrile fibers incorporating tetramethylammonium oxalate as a porogen. Carbon 106:20–27

    Article  CAS  Google Scholar 

  47. Ma C, Song Y, Shi J, Zhang D, Zhong M, Guo Q, Liu L (2012) Phenolic-based carbon nanofiber webs prepared by electrospinning for supercapacitors. Mater Lett 76:211–214

    Article  CAS  Google Scholar 

  48. Fan L, Yang L, Ni X, Han J, Guo R, Zhang C (2016) Nitrogen-enriched meso-macroporous carbon fiber network as a binder-free flexible electrode for supercapacitors. Carbon 107:629–637

    Article  CAS  Google Scholar 

  49. Hyun BG, Son HJ, Ji S, Jang J, Hur S-H, Park J-U (2016) Multi-dimensional carbon nanofibers for supercapacitor electrodes. J Electroceram 38:43–50

    Article  Google Scholar 

  50. Zhang J, Zhang X, Zhou Y, Guo S, Wang K, Liang Z, Xu Q (2014) Nitrogen-doped hierarchical porous carbon nanowhisker ensembles on carbon nanofiber for high-performance supercapacitors. ACS Sustain Chem Eng 2:1525–1533

    Article  Google Scholar 

  51. Xie Q, Zhou S, Wu S, Zhang Y, Zhao P (2017) Supercapacitive behavior of laminar-structured carbon cloth with alternating graphene and hybrid nanofibers: a synergistic effect of graphene-coating and post-oxidization. Appl Surf Sci 407:36–43

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (51673148, 51678411), the Science and Technology Plans of Tianjin (17JCYBJC41700, 17JCZDJC38100, 16PTSYJC00110).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Weimin Kang or Bowen Cheng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 944 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ju, J., Deng, N., Zhang, D. et al. Facile construction of PCNF&CNT composite material by one-step simultaneous carbonization and chemical vapor deposition. J Mater Sci 54, 1616–1628 (2019). https://doi.org/10.1007/s10853-018-2932-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-2932-x

Keywords

Navigation