Skip to main content
Log in

Self-heating and deicing epoxy/glass fiber based carbon nanotubes buckypaper composite

  • Composites
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The recent developments in the aeronautical structure industry have seen a sharp rise in the use of polymer composite materials. The performances of all aerodynamic surfaces are heavily dependent on the shape and the surface form. The modification of these surfaces due to condensation and melting of ice can cause catastrophic decreases in the aerodynamic performance. In this study polymer composite materials as heater were made and studied. The feasibility of using advanced polymer composites for de-icing application was validated and studied through experiments. It consists of thin carbon nanotubes (CNTs) Bucky paper placed between two glass fibers veils and then infiltrated with an epoxy polymer resin and cured. The composite can be heated up very quickly using an electrical power source. The idea of using this new material as a heater and de-icing material was explored experimentally. For that purpose, the temperature distribution was monitored at different positions of the panel using thermal imaging. Experimental results show that the surface temperature of the panel increases gradually as the heating time increases. This temperature increased in a short time period of heating time, implying that the composite panels with CNTs Bucky paper display an excellent heating performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13

Similar content being viewed by others

References

  1. Lynch FT, Khodadoust A (2001) Effects of ice accretions on aircraft aerodynamics. Prog Aerosp Sci 37:669–767

    Article  Google Scholar 

  2. Kim SY, Koretsky C (2013) Effects of road salt deicers on sediment biogeochemistry. Biogeochemistry 112:343–358

    Article  CAS  Google Scholar 

  3. Novotny EV, Murphy D, Stefan HG (2008) Increase of urban lake salinity by road deicing salt. Sci Total Environ 406:131–144

    Article  CAS  Google Scholar 

  4. Gardiner G (2006) Lightning strike protection for composite structures. In: High performance composites. https://www.compositesworld.com/articles

  5. Wei BQ, Vajtai R, Ajayan PM (2001) Reliability and current carrying capacity of carbon nanotubes. Appl Phys Lett 79:1172–1174

    Article  CAS  Google Scholar 

  6. Gao G, Cagin T, Goddard WA III (1998) Energetics, structure, mechanical and vibrational properties of single-walled carbon nanotubes. Nanotechnology 9:184–191

    Article  CAS  Google Scholar 

  7. Yun Y, Shanov V, Tu Y, Schulz KJ, Yarmolenko S, Neralla S, Sankar J, Subramaniam S (2006) A multi-wall carbon nanotube tower electrochemical actuator. Nano Lett 6:689–693

    Article  CAS  Google Scholar 

  8. Hinds BJ, Chopra N, Rantell T, Andrews R, Gavalas V, Bachas LG (2004) Aligned multiwalled carbon nanotube membranes. Science 303:62–65

    Article  CAS  Google Scholar 

  9. Zhang SJ, Lin W, Wong CP, Bucknall DG, Kumar S (2010) Nanocomposites of carbon nanotube fibers prepared by polymer crystallization. ACS Appl Mater Interfaces 2:1642–1647

    Article  CAS  Google Scholar 

  10. Cheng QF, Wang JP, Wen JJ, Liu CH, Jiang KL, Li QQ et al (2010) Carbon nanotube/epoxy composites fabricated by resin transfer molding. Carbon 48:260–266

    Article  CAS  Google Scholar 

  11. Yamamoto N, De Villoria RG, Wardle BL (2010) Electrical and thermal property enhancement of fiber-reinforced polymer laminate composites through controlled implementation of multi-walled carbon nanotubes. Compos Sci Technol 72:2009–2015

    Article  Google Scholar 

  12. Chien AT, Cho S, Joshi Y (2014) Electrical conductivity and Joule heating of polyacrylonitrile/carbon nanotube composite fibers. Polymer 55:6896–6905

    Article  CAS  Google Scholar 

  13. Mas B, Fernandez-Blazquez JP, Duval J J (2013) Thermoset curing through Joule heating of nanocarbons for composite manufacture, repair and soldering. Carbon 63:526–529

    Article  Google Scholar 

  14. Isaji S, Bin Y, Matsuo M (2009) Electrical conductivity and self-temperature-control heating properties of carbon nanotubes filled polyethylene films. Polymer 50:1046–1053

    Article  CAS  Google Scholar 

  15. Yan J, Jeong YG (2015) Synergistic effect of hybrid carbon fillers on electric heating behavior of flexible polydimethylsiloxane-based composite films. Compos Sci Technol 106:134–140

    Article  CAS  Google Scholar 

  16. Chu H, Zhang Z, Liu Y, Leng J (2014) Self-heating fiber reinforced polymer composite using meso/macropore carbon nanotube paper and its application in deicing. Carbon 66:154–163

    Article  CAS  Google Scholar 

  17. Salinier A, Dagréou S, Léonardi F, Derail D, Navascués N (2013) Electrical, rheological and mechanical characterization of multiscale composite materials based on poly(etherimide)/short glass fibers/multiwalled carbon nanotubes. Compos Struct 102(102):81–89

    Article  Google Scholar 

  18. Lee J, Stein IY, Kessler SS et al (2015) Aligned carbon nanotube film enables thermally induced state transformations in layered polymeric materials. ACS Appl Mater Interfaces 7:8900–8905

    Article  CAS  Google Scholar 

  19. Yoon Y, Song J, Kim D, Kim J, Park J, Oh S, Han C (2007) Transparent film heater using single-walled carbonnanotubes. Adv Mater 19:4284–4287

    Article  CAS  Google Scholar 

  20. Bae J, Lim S, Han G, Jo Y, Doung D, Kim E, Chae S, Huy T, Luan N, Lee Y (2012) Heat dissipation of transparent graphene defoggers. Adv Func Mater 22:4819–4826

    Article  CAS  Google Scholar 

  21. Mohseni M, Amirfazli A (2013) A novel electro-thermal anti-icing system for fiber–reinforced polymer composite airfoils. Cold Reg Sci Technol 87:47–58

    Article  Google Scholar 

  22. Xu X, Zhang Y, Jiang J, Wang H, Zhao X, Li Q, Lu W (2017) In-situ curing of glass fiber reinforced polymer composites via resistive heating of carbon nanotube films. Compos Sci Technol 149(149):20–27

    Article  CAS  Google Scholar 

  23. Yao X, Hawkins S, Falzon B (2018) An advanced anti-icing/de-icing system utilizing highly aligned carbon nanotube webs. Carbon 136:130–138

    Article  CAS  Google Scholar 

  24. El Moumen A, Tarfaoui M, Lafdi K, Benyahia H (2017) Dynamic properties of carbon nanotubes reinforced carbon fibers/epoxy textile composites under low velocity impact. Compos B Eng 125:1–8

    Article  Google Scholar 

  25. El Moumen A, Tarfaoui M, Hassoon O, Lafdi K, Benyahia H, Nachtane M (2017) Experimental study and numerical modelling of low velocity impact on laminated composite reinforced with thin film made of carbon nanotubes. Appl Compos Mater. https://doi.org/10.1007/s10443-017-9622-8

    Article  Google Scholar 

  26. Allaoui A, Evesque P, Bai JB (2008) Effect of aging on the reinforcement efficiency of carbon nanotubes in epoxy matrix. J Mater Sci 43:5020–5022. https://doi.org/10.1007/s10853-008-2728-5

    Article  CAS  Google Scholar 

  27. Zhou L, Liu H, Zhang X (2015) Graphene and carbon nanotubes for the synergistic reinforcement of polyamide 6 fibers. J Mater Sci 50:2797–2805. https://doi.org/10.1007/s10853-015-8837-z

    Article  CAS  Google Scholar 

  28. Giubileo F, Iemmo L, Luongo G, Martucciello N, Raimondo M, Guadagno L, Passacantando M, Lafdi K, Di Bartolomeo A (2017) Transport and field emission properties of buckypapers obtained from aligned carbon nanotubes. J Mater Sci 52:6459–6468. https://doi.org/10.1007/s10853-017-0881-4

    Article  CAS  Google Scholar 

  29. Marconnet AM et al (2011) Thermal conduction in aligned carbon nanotube–polymer nanocomposites with high packing density. ACS Nano 5:4818–4825

    Article  CAS  Google Scholar 

  30. Haddadi M, Agoudjil B, Boudenne A (2012) Thermal conductivity of polymer/carbon nanotube composites. Mater Sci Forum 714:99–113

    Article  CAS  Google Scholar 

  31. Benyahia M, Tarfaoui M, Datsyuk D, El Moumen A, Trotsenko S, Reich S (2017) Dynamic properties of hybrid composite structures based multiwalled carbon nanotubes. Compos Sci Technol 148:70–79

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Tarfaoui.

Ethics declarations

Conflicts of interest

We have no conflict of interest to declare. All authors report no conflict of interest relevant to this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tarfaoui, M., El Moumen, A., Boehle, M. et al. Self-heating and deicing epoxy/glass fiber based carbon nanotubes buckypaper composite. J Mater Sci 54, 1351–1362 (2019). https://doi.org/10.1007/s10853-018-2917-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-2917-9

Keywords

Navigation