Skip to main content

Advertisement

Log in

Design of high specific surface area N-doped carbon aerogels via a microwave reduction method

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Improving the specific capacitance of carbon aerogels in supercapacitors and maintaining their high specific surface area remained an important challenge. Here, we prepared resorcinol–phloroglucinol–formaldehyde carbon aerogels reduced with hydrazine hydrate by a microwave method. The effects of the amount of hydrazine hydrate and the time of microwave reaction on the electrochemical performance of carbon aerogels were investigated. The reductive carbon aerogels were characterized by scanning electron microscopy, transmission electron microscopy, Raman spectroscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. The XPS spectra of reductive carbon aerogels indicated a presence of four nitrogen N1s groups, three oxygen O1s groups and six carbon C1s groups in the deconvoluted spectra. Surface area analysis and electrochemical performance were also investigated. The results showed that the specific surface area of the N-doped carbon aerogels could be as high as 803 m2 g−1. According to the electrochemical testing results, the specific capacitance of the N-doped carbon aerogels significantly increased and reached 219 F g−1 at a current density of 1.5 A g−1 compared to the pristine carbon aerogels. The optimal dosage and time of hydrazine hydrate was 20.6 mol L−1 for 25 min. The N-doped carbon aerogels electrode exhibited excellent reversibility with a cycling efficiency of 93.6% after 10000 cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

References

  1. Frackowiak E (2007) Carbon materials for supercapacitor application. Phys Chem Chem Phys 9(15):1774–1785

    Article  CAS  Google Scholar 

  2. Snook GA, Kao P, Best AS (2011) Conducting-polymer-based supercapacitor devices and electrodes. J Power Sources 196(1):1–12

    Article  CAS  Google Scholar 

  3. Yu Z, Tetard L, Zhai L et al (2015) Supercapacitor electrode materials: nanostructures from 0 to 3 dimensions. Energy Environ Sci 8(3):702–730

    Article  CAS  Google Scholar 

  4. Wang Y, Zhou J, Jiang L et al (2015) Development of low-cost DDGS-based activated carbons and their applications in environmental remediation and high-performance electrodes for supercapacitors. J Polym Environ 23(4):595–605

    Article  CAS  Google Scholar 

  5. Frackowiak E, Béguin F (2001) Carbon materials for the electrochemical storage of energy in capacitors. Carbon 39(6):937–950

    Article  CAS  Google Scholar 

  6. Frackowiak E, Jurewicz K, Delpeux S et al (2001) Nanotubular materials for supercapacitors. J Power Sources 97(7):822–825

    Article  Google Scholar 

  7. Pekala RW, Alviso CT, Kong FM et al (1992) Aerogels derived from multifunctional organic monomers. J Non-Cryst Solids 145(1–3):90–98

    Article  CAS  Google Scholar 

  8. Saliger R, Fischer U, Herta C et al (1998) High surface area carbon aerogels for supercapacitors. J Non-Cryst Solids 225(225):81–85

    Article  CAS  Google Scholar 

  9. Sun H, Xu Z, Gao C (2013) Aerogels: multifunctional, ultra-flyweight, synergistically assembled carbon aerogels (Adv. Mater. 18/2013). Adv Mater 25(18):2632

    Article  CAS  Google Scholar 

  10. An H, Wang Y, Wang X et al (2010) Polypyrrole/carbon aerogel composite materials for supercapacitor. J Power Sources 195(19):6964–6969

    Article  CAS  Google Scholar 

  11. Zou S, Xu X, Zhu Y et al (2017) Microwave-assisted preparation of hollow porous carbon spheres and as anode of lithium-ion batteries. Microporous Mesoporous Mater 251:114–121

    Article  CAS  Google Scholar 

  12. Baytar O, Şahin Ömer, Saka C (2018) Sequential application of microwave and conventional heating methods for preparation of activated carbon from biomass and its methylene blue adsorption. Appl Therm Eng 138:542–551

    Article  CAS  Google Scholar 

  13. Zhu Y, Murali S, Stoller MD et al (2011) Carbon-based supercapacitors produced by activation of graphene. Science 332(6037):1537–1541

    Article  CAS  Google Scholar 

  14. Wang G, Zhang L, Zhang J (2012) A review of electrode materials for electrochemical supercapacitors. Chem Soc Rev 41(2):797–828

    Article  CAS  Google Scholar 

  15. Yu D, Dai L (2015) Self-assembled graphene/carbon nanotube hybrid films for supercapacitors. J Phys Chem Lett 1(2):467–470

    Article  Google Scholar 

  16. Sarapuu A, Kreek K, Kisand K et al (2017) Electrocatalysis of oxygen reduction by iron-containing nitrogen-doped carbon aerogels in alkaline solution. Electrochim Acta 230:81–88

    Article  CAS  Google Scholar 

  17. Smirnova A, Wender T, Goberman D et al (2009) Modification of carbon aerogel supports for PEMFC catalysts. Int J Hydrog Energy 34(21):8992–8997

    Article  CAS  Google Scholar 

  18. Fu S, Zhu C, Song J et al (2017) Nitrogen and fluorine-codoped carbon nanowire aerogels as metal-free electrocatalysts for oxygen reduction reaction. Chemistry 23(43):10460–10464

    Article  CAS  Google Scholar 

  19. Travlou NA, Bandosz TJ (2017) N-doped polymeric resin-derived porous carbons as efficient ammonia removal and detection media. Carbon 117:228–239

    Article  CAS  Google Scholar 

  20. Xu YL, Qi JM, Sun FF et al (2015) Carbocatalysis: reduced graphene oxide-catalyzed Boc protection of hydroxyls and graphite oxide-catalyzed deprotection. Tetrahedron Lett 56(21):2744–2748

    Article  CAS  Google Scholar 

  21. Liu ZA, Tao Y, Song XZ et al (2017) A three dimensional N-doped graphene/CNTs/AC hybrid material for high-performance supercapacitors. RSC Adv 7(11):6664–6670

    Article  CAS  Google Scholar 

  22. Voiry D, Yang J, Kupferberg J et al (2016) High-quality graphene via microwave reduction of solution-exfoliated graphene oxide. Science 353(6306):1413–1416

    Article  CAS  Google Scholar 

  23. Jurewicz K, Babeł K, Źiółkowski A et al (2003) Ammoxidation of active carbons for improvement of supercapacitor characteristics. Electrochim Acta 48(11):1491–1498

    Article  CAS  Google Scholar 

  24. Lota G, Grzyb B, Machnikowska H et al (2005) Effect of nitrogen in carbon electrode on the supercapacitor performance. Chem Phys Lett 404(1–3):53–58

    Article  CAS  Google Scholar 

  25. Stankovich Sasha, Dikin Dmitriy A, Piner Richard D et al (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45(7):1558–1565

    Article  CAS  Google Scholar 

  26. Park S, An J, Potts JR et al (2011) Hydrazine-reduction of graphite- and graphene oxide. Carbon 49(9):3019–3023

    Article  CAS  Google Scholar 

  27. Gao X, Jang J, Nagase S (2010) Hydrazine and thermal reduction of graphene oxide: reaction mechanisms, product structures, and reaction design. J Phys Chem C 114(2):832–842

    Article  CAS  Google Scholar 

  28. Sun Y, Tang J, Zhang K et al (2017) Comparison of reduction products from graphite oxide and graphene oxide for anode applications in lithium-ion batteries and sodium-ion batteries. Nanoscale 9(7):2585–2595

    Article  CAS  Google Scholar 

  29. Xu Y, Yan M, Wang S et al (2017) Synthesis, characterization and electrochemical properties of carbon aerogels using different organic acids as polymerization catalysts. J Porous Mater 24(5):1375–1381

    Article  CAS  Google Scholar 

  30. Hao P, Zhao Z, Leng Y et al (2015) Graphene-based nitrogen self-doped hierarchical porous carbon aerogels derived from chitosan for high performance supercapacitors. Nano Energy 15:9–23

    Article  CAS  Google Scholar 

  31. Brun N, Wohlgemuth SA, Osiceanu P et al (2013) Original design of nitrogen-doped carbon aerogels from sustainable precursors: application as metal-free oxygen reduction catalysts. Green Chem 15(9):2514–2524

    Article  CAS  Google Scholar 

  32. Zhu H, Sun Z, Chen M et al (2017) Highly porous composite based on tungsten carbide and N-doped carbon aerogels for electrocatalyzing oxygen reduction reaction in acidic and alkaline media. Electrochim Acta 236(1):154–160

    Article  CAS  Google Scholar 

  33. Zhang J, Zhang L, Yang S et al (2017) Facile strategy to produce N-doped carbon aerogels derived from seaweed for lithium-ion battery anode. J Alloy Compd 701:256–261

    Article  CAS  Google Scholar 

  34. Hu Y, Tong X, Zhuo H et al (2016) 3D hierarchical porous N-doped carbon aerogel from renewable cellulose: an attractive carbon for high-performance supercapacitor electrode and CO2 adsorption. RSC Adv 6(19):15788–15795

    Article  CAS  Google Scholar 

  35. Hao GP, Han F, Guo DC et al (2012) Monolithic carbons with tailored crystallinity and porous structure as lithium-ion anodes for fundamental understanding their rate performance and cycle stability. J Phys Chem C 116(18):10303–10311

    Article  CAS  Google Scholar 

  36. Yu M, Li J, Wang L (2017) KOH-activated carbon aerogels derived from sodium carboxymethyl cellulose for high-performance supercapacitors and dye adsorption. Chem Eng J 310(1):300–306

    Article  CAS  Google Scholar 

  37. Zhou J, Shen H, Li Z et al (2016) Porous carbon materials with dual N, S-doping and uniform ultra-microporosity for high performance supercapacitors. Electrochim Acta 209:557–564

    Article  CAS  Google Scholar 

  38. Zhai Z, Wang S, Xu Y et al (2017) Carbon aerogels with modified pore structures as electrode materials for supercapacitors. J Solid State Electrochem 21(12):3545–3555

    Article  CAS  Google Scholar 

  39. Wang S, Han C, Wang J et al (2014) Controlled synthesis of ordered mesoporous carbohydrate-derived carbons with flower-like structure and N-Doping by self-transformation. Chem Mater 26(23):6872–6877

    Article  CAS  Google Scholar 

  40. Chen LF, Zhang XD, Liang HW et al (2012) Synthesis of nitrogen-doped porous carbon nanofibers as an efficient electrode material for supercapacitors. ACS Nano 6(8):7092–7102

    Article  CAS  Google Scholar 

  41. Zhang J, Chen G, Zhang Q et al (2015) Self-assembly synthesis of N-doped carbon aerogels for supercapacitor and electrocatalytic oxygen reduction. ACS Appl Mater Interfaces 7(23):12760–12766

    Article  CAS  Google Scholar 

  42. Rasines G, Lavela P, Macías C et al (2015) On the use of carbon black loaded nitrogen-doped carbon aerogel for the electrosorption of sodium chloride from saline water. Electrochim Acta 170:154–163

    Article  CAS  Google Scholar 

  43. Zera E, Nickel W, Hao GP et al (2016) Nitrogen doped carbide derived carbon aerogels by chlorine etching of a SiCN aerogel. J Mater Chem A 4(12):4525–4533

    Article  CAS  Google Scholar 

  44. Wang Z, Tang Z, Han Z et al (2015) Effect of drying conditions on the structure of three-dimensional N-doped graphene and its electrochemical performance. RSC Adv 5(26):19838–19843

    Article  CAS  Google Scholar 

  45. Wang HY, Li B, Teng JX et al (2017) N-doped carbon-coated TiN exhibiting excellent electrochemical performance for supercapacitors. Electrochim Acta 257(1):56–63

    Article  CAS  Google Scholar 

  46. Li W, Lu HY, Wu XL et al (2015) Electrochemical performance improvement of N-doped graphene as electrode materials for supercapacitors by optimizing the functional groups. RSC Adv 5(17):12583–12591

    Article  CAS  Google Scholar 

  47. Zhao X, Wang S, Kong F et al (2017) Nitrogen and phosphorus dual-doped hierarchical porous carbon with excellent supercapacitance performance. Electrochim Acta 247:1140–1146

    Article  CAS  Google Scholar 

  48. Kim KS, Park SJ (2012) Synthesis and high electrochemical capacitance of N-doped microporous carbon/carbon nanotubes for supercapacitor. J Electroanal Chem 673(1):58–64

    Article  CAS  Google Scholar 

  49. Dong B, He BL, Xu CL et al (2007) Preparation and electrochemical characterization of polyaniline/multi-walled carbon nanotubes composites for supercapacitor. Mater Sci Eng B 143(1–3):7–13

    Article  CAS  Google Scholar 

  50. Chang L, Yuan L, Fu Z et al (2013) Synthesis and electrochemical performance of N-doped carbon aerogels with super-high specific surface area. High Power Laser Particle Beams 25(10):2621–2626

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Foundation of Key R&D Program of Hebei Province (18393616D), Science and Technology Projects of Hebei Academy of Sciences (18707) and Natural Science Fund and Key Basic Research Project (18964005D).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenfa Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, X., Xu, Y., Wang, S. et al. Design of high specific surface area N-doped carbon aerogels via a microwave reduction method. J Mater Sci 54, 1580–1592 (2019). https://doi.org/10.1007/s10853-018-2909-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-2909-9

Keywords

Navigation