Skip to main content

Advertisement

Log in

Development of Low-Cost DDGS-Based Activated Carbons and Their Applications in Environmental Remediation and High-Performance Electrodes for Supercapacitors

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

A one-step, facile method to produce 3-dimensional porous activated carbons (ACs) from corn residual dried distillers grains with solubles (DDGS) by microwave-assisted chemical activation was developed. The ACs’ application potentials in dye removal and supercapacitor electrodes were also demonstrated. The porous structure and surface properties of the ACs were characterized by N2 adsorption/desorption isotherms and scanning electron microscopy. The results showed that the surface area of the as-prepared ACs was up to 1000 m2/g. In the dye removal tests, these DDGS-based ACs exhibited a maximum adsorption ratio of 477 mg/g on methylene blue. In electric double layer capacitors, electrochemical tests indicated that the ACs had ideal capacitive and reversible behaviors and exhibited excellent electrochemical performance. The specific capacitance varied between 120 and 210 F/g under different scan rates and current densities. In addition, the capacitors showed excellent stability even after one thousand charge–discharge cycles. The specific capacitance was further increased up to 300 F/g by in situ synthesis of MnO2 particles in the ACs to induce pseudo-capacitance. This research showed that the DDGS-based ACs had great potentials in environmental remediation and energy storage applications.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Kim Y, Mosier NS, Hendrickson R et al (2008) Bioresour Technol 99:5165

    Article  CAS  Google Scholar 

  2. Stein HH, Shurson GC (2009) J Anim Sci 87:1292

    Article  CAS  Google Scholar 

  3. Wang X, Liang X, Wang Y et al (2011) Desalination 278:231

    Article  CAS  Google Scholar 

  4. Sharma YC, Uma (2009) J Chem Eng Data 55:435

    Article  Google Scholar 

  5. Berrios M, Martín MÁ, Martín A (2012) J Ind Eng Chem 18:780

    Article  CAS  Google Scholar 

  6. Vijayaraghavan K, Balasubramanian R (2013) J Environ Chem Eng 1:473

    Article  CAS  Google Scholar 

  7. Kötz R, Carlen M (2000) Electrochim Acta 45:2483

    Article  Google Scholar 

  8. Zhang LL, Zhao XS (2009) Chem Soc Rev 38:2520

    Article  CAS  Google Scholar 

  9. Maldhure AV, Ekhe JD (2011) Chem Eng J 168:1103

    Article  CAS  Google Scholar 

  10. Yagmur E, Tunc MS, Banford A, Aktas Z (2013) J Anal Appl Pyrol 104:470

    Article  CAS  Google Scholar 

  11. Foo KY, Hameed BH (2011) Bioresour Technol 102:9794

    Article  CAS  Google Scholar 

  12. Foo KY, Hameed BH (2011) Chem Eng J 166:792

    Article  CAS  Google Scholar 

  13. Zhao X-Y, Huang S-S, Cao J-P et al (2014) J Anal Appl Pyrol 105:116

    Article  CAS  Google Scholar 

  14. Guo Y, Zhao J, Zhang H et al (2005) Dyes Pigm 66:123

    Article  CAS  Google Scholar 

  15. Tan IAW, Ahmad AL, Hameed BH (2008) Chem Eng J 137:462

    Article  CAS  Google Scholar 

  16. Deng H, Zhang G, Xu X, Tao G, Dai J (2010) J Hazard Mater 182:217

    Article  CAS  Google Scholar 

  17. Jin H, Wang X, Gu Z (2013) Mater Focus 2:497

    Article  CAS  Google Scholar 

  18. Hong J, Xiaomin W, Zhengrong G (2013) Mater Focus 2:105

    Article  CAS  Google Scholar 

  19. Ioannidou O, Zabaniotou A (2007) Renew Sustain Energy Rev 11:1966

    Article  CAS  Google Scholar 

  20. Bouchelta C, Medjram MS, Bertrand O, Bellat J-P (2008) J Anal Appl Pyrol 82:70

    Article  CAS  Google Scholar 

  21. Zhong Z-Y, Yang Q, Li X-M, Luo K, Liu Y, Zeng G-M (2012) Ind Crops Prod 37:178

    Article  CAS  Google Scholar 

  22. Horwitz W, Latimer GW (2005) Official methods of analysis of AOAC International. AOAC International, Gaithersburg

    Google Scholar 

  23. Figueroa-Gerstenmaier S, Bonet Avalos J, Gelb LD, Gubbins KE, Vega LF (2003) Langmuir 19:8592

    Article  CAS  Google Scholar 

  24. Gañan J, González-García CM, González JF, Sabio E, Macías-García A, Díaz-Díez MA (2004) Appl Surf Sci 238:347

  25. Rodriguez-Reinoso F, Martin-Martinez JM, Prado-Burguete C, McEnaney B (1987) J Phys Chem 91:515

    Article  CAS  Google Scholar 

  26. Sevilla M, Parra JB, Fuertes AB (2013) ACS Appl Mater Interfaces 5:6360

    Article  CAS  Google Scholar 

  27. Groen JC, Peffer LAA, Pérez-Ramírez J (2003) Micropor Mesopor Mater 60:1

  28. Fu P, Hu S, Xiang J, Sun L, Su S, Wang J (2012) J Anal Appl Pyrol 98:177

    Article  CAS  Google Scholar 

  29. Moreno AH, Arenillas A, Calvo EG, Bermúdez JM, Menéndez JA (2013) J Anal Appl Pyrol 100:111

    Article  CAS  Google Scholar 

  30. Liu L, Lin Y, Liu Y, Zhu H, He Q (2013) J Chem Eng Data 58:2248

    Article  CAS  Google Scholar 

  31. Boyd GE, Adamson AW, Myers LS (1947) J Am Chem Soc 69:2836

    Article  CAS  Google Scholar 

  32. Wang S, Zhu ZH, Coomes A, Haghseresht F, Lu GQ (2005) J Colloid Interface Sci 284:440

    Article  CAS  Google Scholar 

  33. Zhi M, Xiang C, Li J, Li M, Wu N (2013) Nanoscale 5:72

    Article  CAS  Google Scholar 

  34. Prabaharan SRS, Vimala R, Zainal Z (2006) J Power Sources 161:730

    Article  CAS  Google Scholar 

  35. Xu B, Wu F, Chen R et al (2008) Electrochem Commun 10:795

    Article  CAS  Google Scholar 

  36. Wang D-W, Li F, Liu M, Lu GQ, Cheng H-M (2008) Angew Chem Int Ed 47:373

    Article  CAS  Google Scholar 

  37. Lu W, Hartman R, Qu L, Dai L (2011) J Phys Chem Lett 2:655

    Article  CAS  Google Scholar 

  38. Lei C, Amini N, Markoulidis F, Wilson P, Tennison S, Lekakou C (2013) J Mater Chem A 1:6037

    Article  CAS  Google Scholar 

  39. Yan J, Fan Z, Wei T et al (2009) J Power Sources 194:1202

    Article  CAS  Google Scholar 

  40. Jiang H, Li C, Sun T, Ma J (2012) Nanoscale 4:807

    Article  CAS  Google Scholar 

  41. Huo H, Zhao Y, Xu C (2014) J Mater Chem A 2:15111

    Article  CAS  Google Scholar 

  42. Wei D, Scherer MRJ, Bower C, Andrew P, Ryhänen T, Steiner U (2012) Nano Lett 12:1857

    Article  CAS  Google Scholar 

  43. Wang G, Zhang L, Zhang J (2012) Chem Soc Rev 41:797

    Article  CAS  Google Scholar 

  44. Toupin M, Brousse T, Bélanger D (2004) Chem Mater 16:3184

    Article  CAS  Google Scholar 

  45. Wei W, Cui X, Chen W, Ivey DG (2011) Chem Soc Rev 40:1697

    Article  CAS  Google Scholar 

  46. Jin X, Zhou W, Zhang S, Chen GZ (2007) Small 3:1513

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Jessica Lattimer for the training of the microwave furnace and Drs. Yechun Wang and Qixin Zhou for their assistance to the EIS experiment. The authors also gratefully thank Guofeng Ren from Texas Tech University for helpful and enlightening discussion.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Long Jiang or Gilles Lubineau.

Ethics declarations

Funding

Research funds from North Dakota Corn Council and King Abdullah University of Science and Technology Baseline are greatly appreciated.

Conflict of interest

The authors declare no competing financial interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Zhou, J., Jiang, L. et al. Development of Low-Cost DDGS-Based Activated Carbons and Their Applications in Environmental Remediation and High-Performance Electrodes for Supercapacitors. J Polym Environ 23, 595–605 (2015). https://doi.org/10.1007/s10924-015-0741-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-015-0741-8

Keywords

Navigation