Skip to main content
Log in

Catalytic oxidation mechanisms of carbon monoxide over single and double vacancy Cr-embedded graphene

  • Computation
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The detailed catalytic oxidation mechanisms of CO over Cr-embedded graphene have been investigated by means of M06-2X density functional. Both models with chromium atom embedded in single and double vacancy (Cr-SV and Cr-DV) in a graphene sheet were considered. It is found that the CO oxidation on Cr-SV-graphene prefers to Langmuir–Hinshelwood (LH) mechanism, while the Cr-DV-graphene shows good catalytic activity toward the CO oxidation via the Eley–Rideal (ER) mechanism. The present results imply that the low-cost Cr-embedded graphene is a prospective catalyst for CO oxidation at room temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Royer S, Duprez D (2011) Catalytic oxidation of carbon monoxide over transition metal oxides. ChemCatChem 3:24–65

    Article  CAS  Google Scholar 

  2. Peterson EJ, DeLaRiva AT, Lin S, Johnson RS, Guo H, Miller JT, HunKwak J, Peden CH, Kiefer B, Allard LF, Ribeiro FH, Datye AK (2014) Low-temperature carbon monoxide oxidation catalysed by regenerable atomically dispersed palladium on alumina. Nat Commun 5:4885–4895

    Article  CAS  Google Scholar 

  3. Eichler A (2002) CO oxidation on transition metal surfaces: reaction rates from first principles. Surf Sci 498:314–320

    Article  CAS  Google Scholar 

  4. Freund HJ, Meijer G, Scheffler M, Schloegl R, Wolf M (2011) CO oxidation as a prototypical reaction for heterogeneous processes. Angew Chem Int Ed 43:10064–10094

    Article  Google Scholar 

  5. Johnson RS, DeLaRiva A, Ashbacher V, Halevi B, Villanueva CJ, Smith GK, Lin S, Datye AK, Guo H (2013) The CO oxidation mechanism and reactivity on PdZn alloys. Phys Chem Chem Phys 15:7768–7776

    Article  CAS  Google Scholar 

  6. Esrafili MD, Saeidi N, Nematollahi P (2016) A DFT study on SO3 capture and activation over Si- or Al-doped graphene. Chem Phys Lett 658:146–151

    Article  CAS  Google Scholar 

  7. Lu YH, Zhou M, Zhang C, Feng YP (2009) Metal-embedded graphene: a possible catalyst with high activity. J Phys Chem C 113:20156–20160

    Article  CAS  Google Scholar 

  8. Hendriksen B, Frenken J (2002) CO oxidation on Pt (110): scanning tunneling microscopy inside a high-pressure flow reactor. Phys Rev Lett 89:046101–046104

    Article  CAS  Google Scholar 

  9. Su HY, Yang MM, Bao XH, Li WX (2008) The effect of water on the CO oxidation on Ag (111) and Au (111) surfaces: a first-principle study. J Phys Chem C 112:17303–17310

    Article  CAS  Google Scholar 

  10. Chen MS, Cai Y, Yan Z, Gath KK, Axnanda S, Goodman DW (2007) Highly active surfaces for CO oxidation on Rh, Pd, and Pt. Surf Sci 601:5326–5331

    Article  CAS  Google Scholar 

  11. Liu W, Zhu Y, Lian J, Jiang Q (2007) Adsorption of CO on surfaces of 4d and 5d elements in group VIII. J Phys Chem C 111:1005–1009

    Article  CAS  Google Scholar 

  12. Liu DJ (2007) CO oxidation on Rh (100): multisite atomistic lattice-gas modeling. J Phys Chem C 111:14698–14706

    Article  CAS  Google Scholar 

  13. Wallace WT, Whetten RL (2002) Coadsorption of CO and O2 on selected gold clusters: evidence for efficient room-temperature CO2 generation. J Am Chem Soc 124:7499–7505

    Article  CAS  Google Scholar 

  14. Chang CM, Cheng C, Wei CM (2008) CO oxidation on unsupported Au55, Ag55, and Au25Ag30 nanoclusters. J Chem Phys 128:124710–124714

    Article  CAS  Google Scholar 

  15. Molina L, Hammer B (2003) Active role of oxide support during CO oxidation at Au/MgO. Phys Rev Lett 90:206102–206105

    Article  CAS  Google Scholar 

  16. Esrafili MD, Nematollahi P, Nurazar R (2016) Pd-embedded graphene: an efficient and highly active catalyst for oxidation of CO. Superlattice Microstruct 92:60–67

    Article  CAS  Google Scholar 

  17. Huang C, Ye X, Chen C, Lin S, Xie D (2013) A computational investigation of CO oxidation on ruthenium-embedded hexagonal boron nitride nanosheet. Comput Theor Chem 1011:5–10

    Article  CAS  Google Scholar 

  18. Tang YN, Yang ZX, Dai XQ (2012) A theoretical simulation on the catalytic oxidation of CO on Pt/graphene. Phys Chem Chem Phys 14:16566–16572

    Article  CAS  Google Scholar 

  19. Xu GL, Wang R, Yang F, Ma DW, Yang ZX, Lu ZS (2017) CO oxidation on single Pd atom embedded defect-graphene via a new termolecular Eley–Rideal mechanism. Carbon 118:35–42

    Article  CAS  Google Scholar 

  20. Du J, Wu G, Wang J (2010) Density functional theory study of the interaction of carbon monoxide with bimetallic Co–Mn clusters. J Phys Chem A 114:10508–10514

    Article  CAS  Google Scholar 

  21. Li YF, Zhao JJ, Chen ZF (2012) Fe-anchored graphene oxide: a low-cost and easily accessible catalyst for low-temperature CO oxidation. J Phys Chem C 116:2507–2514

    Article  CAS  Google Scholar 

  22. Li Y, Zhou Z, Yu G, Chen W, Chen Z (2010) CO catalytic oxidation on iron-embedded graphene: computational quest for low-cost nanocatalysts. J Phys Chem C 114:6250–6254

    Article  CAS  Google Scholar 

  23. Wannakao S, Nongnual T, Khongpracha P, Maihom T, Limtrakul J (2012) Reaction mechanisms for CO catalytic oxidation by N2O on Fe-embedded graphene. J Phys Chem C 116:16992–16998

    Article  CAS  Google Scholar 

  24. Zhao P, Su Y, Zhang Y, Li SJ, Chen G (2011) CO catalytic oxidation on iron-embedded hexagonal boron nitride sheet. Chem Phys Lett 515:159–162

    Article  CAS  Google Scholar 

  25. Song EH, Wen Z, Jiang Q (2011) CO catalytic oxidation on copper-embedded graphene. J Phys Chem C 115:3678–3683

    Article  CAS  Google Scholar 

  26. Esrafili MD, Nematollahi P, Abdollahpour H (2016) A comparative DFT study on the CO oxidation reaction over Al- and Ge-embedded graphene as efficient metal-free catalysts. Appl Surf Sci 378:418–425

    Article  CAS  Google Scholar 

  27. Esrafili M, Saeidi N (2015) Sn-embedded graphene: an active catalyst for CO oxidation to CO2? Phys E 74:382–387

    Article  CAS  Google Scholar 

  28. Wang L, Luo Q, Zhang W, Yang J (2014) Transition metal atom embedded graphene for capturing CO: a first-principles study. Int J Hydrog Energy 39:20190–20196

    Article  CAS  Google Scholar 

  29. Zhao JX, Chen Y, Fu HG (2012) Si-embedded graphene: an efficient and metal-free catalyst for CO oxidation by N2O or O2. Theor Chem Acc 131:1242–1252

    Article  Google Scholar 

  30. Tang YN, Liu ZY, Dai XQ, Yang ZX, Chen WG, Ma DW, Lu ZS (2014) Theoretical study on the Si-doped graphene as an efficient metal-free catalyst for CO oxidation. Appl Surf Sci 308:402–407

    Article  CAS  Google Scholar 

  31. Tang YN, Pan LJ, Chen WG, Li CG, Shen ZG, Dai XQ (2015) Reaction mechanisms for CO catalytic oxidation on monodisperse Mo atom-embedded graphene. Appl Phys A 119:475–485

    Article  CAS  Google Scholar 

  32. Oubal M, Picaud S, Rayez MT, Rayez JC (2013) Adsorption of atmospheric oxidants at divacancy sites of graphene: a DFT study. Comput Theor Chem 1016:22–27

    Article  CAS  Google Scholar 

  33. Wanno B, Tabtimsai C (2014) A DFT investigation of CO adsorption on VIIIB transition metal-doped graphene sheets. Superlattice Microstruct 67:110–117

    Article  CAS  Google Scholar 

  34. Wang MG, Wang Z (2017) Single Ni atom incorporated with pyridinic nitrogen graphene as an efficient catalyst for CO oxidation: first-principles investigation. RSC Adv 7:48819–48824

    Article  CAS  Google Scholar 

  35. Zhao YS, Dong F, Han W, Zhao HJ, Tang ZC (2018) Construction of Cu–Ce/graphene catalysts via a one-step hydrothermal method and their excellent CO catalytic oxidation performance. RSC Adv 8:1583–1592

    Article  CAS  Google Scholar 

  36. Zhang C, Lv W, Yang QH, Liu Y (2012) Graphene supported nano particles of Pt–Ni for oxidation. Appl Surf Sci 258:7795–7800

    Article  CAS  Google Scholar 

  37. Jiang QG, Ao ZM, Li S, Wen Z (2014) Density functional theory calculations on the CO catalytic oxidation on Al-embedded graphene. RSC Adv 4:20290–20296

    Article  CAS  Google Scholar 

  38. Dai GL, Fan KN (2007) Theoretical study of the reaction of Cr+ with SCO in gas phase. Int J Quantum Chem 107:1598–1607

    Article  CAS  Google Scholar 

  39. Khaddar-Zine S, Ghorbel A, Naccache C (1999) EPR and UV–visible spectroscopic studies of alumina-supported chromium oxide catalyst. J Mol Catal A: Chem 150:223–231

    Article  CAS  Google Scholar 

  40. Childers MI, Vitek AK, Morris LS, Widger PCB, Ahmed SM, Zimmerman PM, Coates GW (2017) Isospecific, chain shuttling polymerization of propylene oxide using a bimetallic chromium catalyst: a new route to semicrystalline polyols. J Am Chem Soc 139:11048–11054

    Article  CAS  Google Scholar 

  41. Weckhuysen BM, Schoonheydt RA (1999) Dehydrogenation over supported chromium oxide catalysts. Catal Today 51:223–232

    Article  CAS  Google Scholar 

  42. Pena DA, Uphade BS, Reddy EP, Smirniotis PG (2004) Identification of surface species on titania-supported manganese, chromium, and copper oxide low-temperature SCR catalysts. J Phys Chem B 108:9927–9936

    Article  CAS  Google Scholar 

  43. Thakur JT, Saini HS, Singh M, Reshak AH, Kashyap MK (2016) Quest for magnetism in graphene via Cr- and Mo-doping: a DFT approach. Phys E 78:35–40

    Article  CAS  Google Scholar 

  44. Krasheninnikov AV, Lehtinen PO, Foster AS, Pyykko P, Nieminen RM (2009) Embedding transition-metal atoms in graphene: structure, bonding, and magnetism. Phys Rev Lett 102:126807–126810

    Article  CAS  Google Scholar 

  45. Becke AD (1993) A new mixing of Hartree–Fock and local density-functional theories. J Chem Phys 98:1372–1377

    Article  CAS  Google Scholar 

  46. Frisch MJ et al (2010) Gaussian 09, revision C.01. Gaussian Inc, Wallingford

    Google Scholar 

  47. Zhao WH, Yang LJ, Qing LH, Lv XM, Yi LY, Li H, Chen ZQ (2015) The strong effect of substituents on the carbonyl reduction in graphene oxide: a DFT study. Comput Theor Chem 1068:1–7

    Article  CAS  Google Scholar 

  48. Lu T, Chen FW (2012) Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem 33:580–592

    Article  Google Scholar 

  49. Reed AE, Curtiss LA, Weinhold F (1988) Intermolecular interactions from a natural bond orbital, donor–acceptor viewpoint. Chem Rev 88:899–926

    Article  CAS  Google Scholar 

  50. Robertson AW, Allen CS, Wu YA, He K, Olivier J, Neethling J, Kirkland AI, Warner JH (2012) Spatial control of defect creation in graphene at the nanoscale. Nat Commun 3:1144–1150

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Jiangsu Overseas Visiting Scholar Program for University Prominent Young and Middle-aged Teachers and Presidents, National Science Foundations of China (21203135) and Natural Science Foundation for colleges and universities in Jiangsu Province (14KJB150024). The computing center for Fudan University and Compute Canada are thanked for computer time.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoliang Dai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, G., Chen, L. & Zhao, X. Catalytic oxidation mechanisms of carbon monoxide over single and double vacancy Cr-embedded graphene. J Mater Sci 54, 1395–1408 (2019). https://doi.org/10.1007/s10853-018-2896-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-2896-x

Keywords

Navigation