Skip to main content
Log in

Synergistic effect of conducting and insulating fillers in polymer nanocomposite films for attenuation of X-band

  • Composites
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Nanocomposite films comprising of ion-conducting polymer electrolyte, multi-walled carbon nanotubes (MWCNT) as the electron-conducting network and ceramic (BaTiO3) as ferroelectric nanofiller have been synthesised for electromagnetic shielding application. XRD and dielectric studies of the synthesised BaTiO3 nanoparticles show a tetragonal structure and ferroelectric nature. The incorporation of nanofillers (MWCNT and BaTiO3) in the polymer electrolyte enhances the conductivity and dielectric property of the nanocomposites. Polymer nanocomposites with 7.5 wt% of BaTiO3 nanoparticles have exhibited the highest shielding effectiveness (SET) ~ 81 dB in the X-band (8–12 GHz). This enhancement in SE can be attributed to the (1) formation of micro-capacitors and interconnected network provided by MWCNTs, (2) spontaneous polarisation of BaTiO3 and its volumetric effect on the polymer nanocomposites and (3) leakage current due to the ions of the electrolyte which results in dielectric loss.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

References

  1. Tong XC (2008) Advanced materials and design for electromagnetic interference shielding. CRC Press, London

    Book  Google Scholar 

  2. Kheifets L, Afifi AA, Shimkhada R (2006) Public health impact of extremely low frequency electromagnetic fields. Environ Health Persp 114:1532–1607

    Article  Google Scholar 

  3. Huo J, Wang L, Yu H (2009) Polymer nanocomposites for electromagnetic wave absorption. J Mater Sci 44:3917–3927. https://doi.org/10.1007/s10853-009-3561-1

    Article  CAS  Google Scholar 

  4. Zhao B, Zhao C, Li R, Hamidinejad SM, Park CB (2017) Flexible, ultrathin, and high-efficiency electromagnetic shielding properties of poly(vinylidene fluoride)/carbon composite films. ACS Appl Mater Interfaces 9:20873–20884

    Article  CAS  Google Scholar 

  5. Kim HR, Fujimori K, Kim BS, Kim IS (2010) Light weight nanofibrous EMI shielding nanowebs prepared by electrospinning and metallization. Compos Sci Technol 72(11):1233–1239

    Article  Google Scholar 

  6. Saini P, Choudhary V, Sood KN, Dhawan SK (2009) Electromagnetic interference shielding behavior of polyaniline/graphite composites prepared by in situ emulsion pathway. J Appl Polym Sci 113(5):3146–3155

    Article  CAS  Google Scholar 

  7. Kong LB, Li ZW, Liu L, Huang R, Abshinova M, Yang ZH, Tang CB, Tan PK, Deng CR, Matitsine S (2013) Recent progress in some composite materials and structures for specific electromagnetic applications. Int Mater Rev 58(4):203–259

    Article  CAS  Google Scholar 

  8. Ohlan A, Singh K, Chandra A, Dhawan SK (2010) Microwave absorption behavior of core–shell structured poly (3,4-ethylenedioxy thiophene)—barium ferrite nanocomposites. ACS Appl Mater Interfaces 2:927–933

    Article  CAS  Google Scholar 

  9. Singh AP, Mishra M, Sambyal P, Gupta BK, Chandra A, Dhawan SK (2014) Encapsulation of γ-Fe2O3 decorated reduced graphene oxide in polyaniline core–shell tubes as an exceptional tracker for electromagnetic environmental pollution. J Mater Chem A 2:3581–3593

    Article  CAS  Google Scholar 

  10. Varshney S, Ohlan A, Jain VK, Dutta VP, Dhawan SK (2014) Synthesis of ferrofluid based nanoarchitectured polypyrrole composites and its application for electromagnetic shielding. Mater Chem Phys 143:806–814

    Article  CAS  Google Scholar 

  11. Ke K, Wang Y, Liu XQ, Cao J, Luo Y, Yang W, Xie BH, Yang MBA (2012) Comparison of melt and solution mixing on the dispersion of carbon nanotubes in a poly(vinylidene fluoride) matrix. Compos B 43:1425–1432

    Article  CAS  Google Scholar 

  12. Ram R, Rahaman M, Khastgir D (2015) Electrical properties of polyvinylidene fluoride (PVDF)/multi-walled carbon nanotube (MWCNT) semi-transparent composites: modelling of DC conductivity. Compos A 69:30–39

    Article  CAS  Google Scholar 

  13. Bhingardive V, Sharma M, Suwas S, Madras G, Bose S (2015) Polyvinylidene fluoride based lightweight and corrosion resistant electromagnetic shielding materials. RSC Adv 5:35909–35916

    Article  CAS  Google Scholar 

  14. Xu N, Hu L, Zhang Q, Xiao X, Yang H, Yu E (2015) Significantly enhanced dielectric performance of poly(vinylidene fluoride-co-hexafluoropylene)-based composites filled with hierarchical flower-like TiO2 particles. ACS Appl Mater Interfaces 7:27373–27381

    Article  CAS  Google Scholar 

  15. Arjmand M, Apperley T, Okoniewski M, Sundararaj U (2012) Comparative study of electromagnetic interference shielding properties of injection molded versus compression molded multi-walled carbon nanotube/polystyrene composites. Carbon 50:5126–5134

    Article  CAS  Google Scholar 

  16. Gupta A, Choudhary V (2011) Electromagnetic interference shielding behavior of poly(trimethylene terephthalate)/multi-walled carbon nanotube composites. Compos Sci Technol 71:1563–1568

    Article  CAS  Google Scholar 

  17. Eswaraiah V, Sankaranarayana V, Ramaprabhu S (2011) Functionalized graphene–PVDF foam composites for EMI shielding. Macromol Mater Eng 296:894–898

    Article  CAS  Google Scholar 

  18. Sharma M, Sharma K, Abraham J, Thomas S, Madras G, Bose S (2014) Flexible EMI shielding materials derived by melt blending PVDF and ionic liquid modified MWCNTs. Mater Res Express 1:035003–035020

    Article  Google Scholar 

  19. Saleh MHA, Sundararaj U (2009) Electromagnetic interference shielding mechanisms of CNT/polymer composites. Carbon 47:1738–1746

    Article  Google Scholar 

  20. Pande S, Singh BP, Mathur RB, Dhami TL, Saini P, Dhawan SK (2009) Improved electromagnetic interference shielding properties of MWCNT–PMMA composites using layered structures. Nanoscale Res Lett 4:327–334

    Article  CAS  Google Scholar 

  21. Sharma M, Singh MP, Srivastava C, Madras G, Bose S (2014) Poly(vinylidene fluoride)-based flexible and lightweight materials for attenuating microwave radiations. ACS Appl Mater Interfaces 6(23):21151–21160

    Article  CAS  Google Scholar 

  22. Joseph N, Singh SK, Sirugudu RK, Murthy VRK, Kumar SA, Sebastian MT (2013) Effect of silver incorporation into PVDF-barium titanate composites for EMI shielding applications. Mater Res Bull 48:1681–1687

    Article  CAS  Google Scholar 

  23. Pawar SP, Marathe DA, Pattabhi K, Bose S (2015) Electromagnetic interference shielding through MWNT grafted Fe3O4 nanoparticles in PC/SAN blends. J Mater Chem A 3:556–669

    Article  Google Scholar 

  24. Sabira K, Jayakrishnan MP, Saheeda P, Jayalekshmi S (2018) On the absorption dominated emi shielding effects in free standing and flexible films of poly(vinylidenefluoride)/graphene nanocomposite. Eur Polym J 99:437–444

    Article  CAS  Google Scholar 

  25. Vyas MK, Chandra A (2016) Ion-electron-conducting polymer composites: promising electromagnetic interference shielding material. ACS Appl Mater Interfaces 8:18450–18461

    Article  CAS  Google Scholar 

  26. Prateek Thakur VK, Gupta RK (2016) Recent progress on ferroelectric polymer-based nanocomposites for high energy density capacitors: synthesis, dielectric properties, and future aspects. Chem Rev 116(7):4260–4317

    Article  CAS  Google Scholar 

  27. Song Y, Shen Y, Liu H, Lin Y, Li M, Nan CW (2012) Enhanced dielectric and ferroelectric properties induced by dopamine-modified BaTiO3 nanofibers in flexible poly(vinylidene fluoride-trifluoroethylene) nanocomposites. J Mater Chem 22:8063–8068

    Article  CAS  Google Scholar 

  28. Tang H, Sodano HA (2013) Ultra high energy density nanocomposite capacitors with fast discharge using Ba0.2Sr0.8TiO3 nanowires. Nano Lett 13(4):1373–1379

    Article  CAS  Google Scholar 

  29. Thomas P, Satapathy S, Dwarakanath K, Varma KBR (2010) Dielectric properties of poly(vinylidene fluoride)/CaCu3Ti4O12 nanocrystal composite thick films. Express Polym Lett 4(10):632–643

    Article  CAS  Google Scholar 

  30. Bai Y, Cheng ZY, Bharti V, Xu HS, Zhang QM (2000) High-dielectric-constant ceramic-powder polymer composites. Appl Phys Lett 76:3804–3806

    Article  CAS  Google Scholar 

  31. Olmos D, Martínez-Tarifa JM, González-Gaitano G, González-Benito J (2012) Uniformly dispersed submicrometre BaTiO3 particles in PS based composites. Morphology, structure and dielectric properties. Polym Test 31:1121–1130

    Article  CAS  Google Scholar 

  32. Chen J, Email XY, Yang F, Fan Y, Jiang Y, Zhou Y, Duan Z (2017) Enhanced energy density of polymer composites filled with BaTiO3@Ag nanofibers for pulse power application. J Mater Sci: Mater Electron 28:8043–8050. https://doi.org/10.1007/s10854-017-6510-9

    Article  CAS  Google Scholar 

  33. Luo B, Wang X, Tian E, Gong H, Zhao Q, Shen Z, Xu Y, Xiao X, Li L (2016) Dielectric enhancement in graphene/barium titanate nanocomposites. ACS Appl Mater Interfaces 8:3340–3348

    Article  CAS  Google Scholar 

  34. Liu ZD, Feng Y, Li WL (2015) High dielectric constant and low loss of polymeric dielectric composites filled by carbon nanotubes adhering BaTiO3 hybrid particles. RSC Adv 5:29017–29021

    Article  CAS  Google Scholar 

  35. Dang ZM, Yao SH, Yuan JK, Bai J (2010) Tailored dielectric properties based on microstructure change in BaTiO3-carbon nanotube/polyvinylidene fluoride three-phase nanocomposites. J Phys Chem C 114(31):13204–13209

    Article  CAS  Google Scholar 

  36. Kingston H, Jassie L (1998) Microwave-enhanced chemistry. Fundamentals, sample preparation and applications. ACS Publishing, Washington DC

    Google Scholar 

  37. Mingos M, Baghurst D (1991) Applications of microwave dielectric heating effects to synthetic problems in chemistry. Chem Soc Rev 20:1–47

    Article  CAS  Google Scholar 

  38. Gabriel C, Gabriel S, Grant E, Halstead B, Michael D, Mingos P (1998) Dielectric parameters relevant to microwave dielectric heating. Chem Soc Rev 27:213–224

    Article  CAS  Google Scholar 

  39. Kappe C (2005) Microwaves in organic and medicinal chemistry. Wiley-VCH, Weinheim

    Book  Google Scholar 

  40. Lewandowski A, Swiderska A (2004) New composite solid, electrolytes based on a polymer and ionic liquids. Solid State Ionics 169:21–24

    Article  CAS  Google Scholar 

  41. Wang D, Zhou T, Zha JW, Zhao J, Shi CY, Dang ZM (2013) Functionalized graphene–BaTiO3/ferroelectric polymer nanodielectric composites with high permittivity, low dielectric loss, and low percolation threshold. J Mater Chem A 1:6162–6168

    Article  CAS  Google Scholar 

  42. Barber P, Balasubramanian S, Anguchamy Y, Gong S, Wibowo A, Gao H, Ploehn HJ, Loye HCZ (2009) Polymer composite and nanocomposite dielectric materials for pulse power energy storage. Materials 2(4):1697–1733

    Article  CAS  Google Scholar 

  43. Shalu Chaurasia SK, Singh RK, Chandra S (2013) Thermal stability, complexing behavior, and ionic transport of polymeric gel membranes based on polymer PVdF-HFP and ionic liquid, [BMIM][BF4]. J Phys Chem B 117:897–906

    Article  CAS  Google Scholar 

  44. Brzozowski E, Castro MS (2003) Lowering the synthesis temperature of high-purity BaTiO3 powder by modification in the processing conditions. Thermochim Acta 398:123–129

    Article  CAS  Google Scholar 

  45. Tsuzuku K, Couzi M (2012) In situ investigation of chemical reaction between BaCO3 and anatase or rutile TiO2. J Mater Sci 47:4481–4487. https://doi.org/10.1007/s10853-012-6310-9

    Article  CAS  Google Scholar 

  46. Turton DA, Hunger J, Stoppa A, Hefter G, Thoman A, Walther M, Buchner R, Wynne K (2009) Dynamics of imidazolium ionic liquids from a combined dielectric relaxation and optical Kerr Effect Study: evidence for mesoscopic aggregation. J Am Chem Soc 131:11140–11146

    Article  CAS  Google Scholar 

  47. Ahmad S (2009) Polymer electrolytes: characteristics and peculiarities. Ionics 15:309–321

    Article  CAS  Google Scholar 

  48. Buscaglia MT, Bassoli M, Buscaglia V (2005) Solid-state synthesis of ultrafine BaTiO3 powders from nanocrystalline BaCO3 and TiO2. J Am Ceram Soc 88:2374–2379

    Article  CAS  Google Scholar 

  49. Yoon DH (2006) Tetragonality of barium titanate powder for a ceramic capacitor application. J Ceram Process Res 7:343–354

    Google Scholar 

  50. Lee TT, Huang CY, Chang CY, Cheng IK, Hu CL, Lee CT, Fujimoto M (2012) Phase evolution of solid-state BaTiO3 powder prepared with the ultrafine BaCO3 and TiO2. J Mater Res 27(19):2495–2502

    Article  CAS  Google Scholar 

  51. Miao R, Liu B, Zhy Z, Liu Y, Li J, Wang X, Li O (2008) PVDF-HFP-based porous polymer electrolyte membranes for lithium-ion batteries. J Power Sources 184(2):420–426

    Article  CAS  Google Scholar 

  52. Stephan AH, Nahm KS, Kulandainathan MA, Ravi G, Wilson J (2006) Poly(vinylidene fluoride-hexafluoropropylene) (PVdF-HFP) based composite electrolytes for lithium batteries. J Eur Polym 42:1728–1734

    Article  CAS  Google Scholar 

  53. Zhang B, Xu Y, Zheng Y, Dai L, Zhang M, Yang J, Chen Y, Chen X, Zhou JA (2011) Facile synthesis of polypyrrole/carbon nanotube composites with ultrathin, uniform and thickness-tunable polypyrrole shells. Nanoscale Res Lett 6(431):1–9

    Google Scholar 

  54. Lotnyk A, Senz S, Hesse D (2006) Formation of BaTiO3 thin films from (110) TiO2 rutile single crystals and BaCO3 by solid state reactions. Solid State Ionics 177:429–436

    Article  CAS  Google Scholar 

  55. Du CH, Zhu BK, Xu YY (2006) The effects of quenching on the phase structure of vinylidene fluoride segments in PVdF-HFP copolymer and PVdF-HFP/PMMA blends. J Mater Sci 41:417–421. https://doi.org/10.1007/s10853-005-2182-6

    Article  CAS  Google Scholar 

  56. Ataollahi N, Ahmad A, Hamzah H, Rahman MYA, Mohamed NS (2012) Preparation and characterization of PVDF-HFP/MG49 based polymer blend electrolyte. Int J Electrochem Sci 7:6693–6703

    CAS  Google Scholar 

  57. Rajendran S, Kannan R, Mahendran O (2001) Ionic conductivity studies in poly(methylmethacrylate)–polyethylene oxide hybrid polymer electrolytes with lithium salts. J Power Sources 96(2):406–410

    Article  CAS  Google Scholar 

  58. Romann T, Oll O, Pikma P, Lust E (2012) Abnormal infrared effects on bismuth thin film–EMImBF4 ionic liquid interface. Electrochem Commun 23:118–121

    Article  CAS  Google Scholar 

  59. Katsyuba SA, Dyson PJ, Vandyukova EE, Chernova AV, Vidis A (2004) Molecular structure, vibrational spectra, and hydrogen bonding of the ionic liquid 1-ethyl-3-methyl-1H-imidazolium tetrafluoroborate. Helv Chim Acta 87:2556–2565

    Article  CAS  Google Scholar 

  60. Bhadra S, Singha NK, Khastgir D (2009) Dielectric properties and EMI shielding efficiency of polyaniline and ethylene 1-octene based semi-conducting composites. Curr Appl Phys 9:396–403

    Article  Google Scholar 

  61. Zhu J, Ji X, Yin M, Guo S, Shen J (2017) Poly (vinylidene fluoride) based percolative dielectrics with tunable coating of polydopamine on carbon nanotubes: toward high permittivity and low dielectric loss. Compos Sci Technol 144:79–88

    Article  CAS  Google Scholar 

  62. Dakin TW (2006) Conduction and polarization mechanisms and trends in dielectric. IEEE Electr Insul Mag 22(5):11–28

    Article  Google Scholar 

  63. Luo H, Zhang D, Jiang C, Yuan X, Chen C, Zhou K (2015) Improved dielectric properties and energy storage density of poly(vinylidene fluoride-co-hexafluoropropylene) nanocomposite with hydantoin epoxy resin coated BaTiO3. ACS Appl Mater Interfaces 7:8061–8069

    Article  CAS  Google Scholar 

  64. Li Y, Huang X, Hu Z, Jiang P, Li S, Tanaka T (2011) Large dielectric constant and high thermal conductivity in poly(vinylidene fluoride)/barium titanate/silicon carbide three-phase nanocomposites. ACS Appl Mater Interfaces 3:4396–4403

    Article  CAS  Google Scholar 

  65. Vyas MK, Chandra A (2018) Role of organic/inorganic salts and nanofillers in polymer nanocomposites: enhanced conduction, rheological, and thermal properties. J Mater Sci 53:4987–5003. https://doi.org/10.1007/s10853-017-1912-x

    Article  CAS  Google Scholar 

  66. Ye H, Huang J, Xu JJ, Khalfan A, Greenbaumb SG (2007) Li ion conducting polymer gel electrolytes based on ionic liquid/PVDF-HFP blends. J Electrochem Soc 154(11):1048–1057

    Article  Google Scholar 

  67. Giroud N, Rouault H, Chainet E, Poignet JC (2009) Properties of BMIBF4–LiBF4 electrolytes for lithium ion batteries. ECS Trans 16(35):75–88

    Article  CAS  Google Scholar 

  68. Rajendran S, Prabhu MR, Rani MU (2008) Ionic conduction in poly(vinyl chloride)/poly(ethyl methacrylate)-based polymer blend electrolytes complexed with different lithium salts. J Power Sources 180:880–883

    Article  CAS  Google Scholar 

  69. Raghavan P, Zhao X, Manuel J, Chauhan GS, Ahn JH, Ryu HS, Ahn HJ, Kim KW, Nah C (2010) Electrochemical performance of electrospun poly(vinylidene fluoride-co-hexafluoropropylene)-based nanocomposite polymer electrolytes incorporating ceramic fillers and room temperature ionic liquid. Electrochim Acta 55:1347–1354

    Article  CAS  Google Scholar 

  70. Singh K, Ohlan A, Bakhshi AK, Dhawan SK (2010) Synthesis of conducting ferromagnetic nanocomposite with improved microwave absorption properties. Mater Chem Phys 119:201–207

    Article  CAS  Google Scholar 

  71. Kar GP, Biswas S, Rohini R, Bose S (2015) Tailoring the dispersion of multiwall carbon nanotubes in co-continuous PVDF/ABS blends to design materials with enhanced electromagnetic interference shielding. J Mater Chem A 3:7974–7985

    Article  CAS  Google Scholar 

  72. Saini P, Arora M, Gupta G, Gupta BK, Singh VN, Choudhary V (2013) High permittivity polyaniline–barium titanate nanocomposites with excellent electromagnetic interference shielding response. Nanoscale 5:4330–4336

    Article  CAS  Google Scholar 

  73. JiS Im, Kim JG, Lee SH, Lee YS (2010) Effective electromagnetic interference shielding by electrospun carbon fibers involving Fe2O3/BaTiO3/MWCNT additives. Mater Chem Phys 124:434–438

    Article  Google Scholar 

  74. Guo AP, Zhang XJ, Qu JK, Wang SW, Zhu JQ, Wang GS, Guo L (2017) Improved microwave absorption and electromagnetic interference shielding properties based on graphene–barium titanate and polyvinylidene fluoride with varying content. Mater Chem Front 1:2519–2526

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Prof. S. A. Hashmi and Prof. S. Murugavel, University of Delhi, for, respectively, providing transport number and furnace facility. We also gratefully acknowledge the financial support by the University of Delhi, India, through the R&D Grant and USIC, University of Delhi, for providing instrumentation facility. One of the authors (MKV) is grateful to the University Grants Commission, New Delhi, for providing a Senior Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amita Chandra.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vyas, M.K., Chandra, A. Synergistic effect of conducting and insulating fillers in polymer nanocomposite films for attenuation of X-band. J Mater Sci 54, 1304–1325 (2019). https://doi.org/10.1007/s10853-018-2894-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-2894-z

Keywords

Navigation