Skip to main content
Log in

One-step synthesis of hierarchical metal oxide nanosheet/carbon nanotube composites by chemical vapor deposition

  • Composites
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

We report here the one-step water-assisted CVD growth of metal oxide nanosheets/carbon nanotubes (CNTs) composites. The cross-linked composites were characterized by scanning electron microscopy, transmission electron microscopy, and Raman spectroscopy. The results showed that helical CNTs were obtained when the CVD growth process was prolonged to 1 h, and the typical fish-bone-type CNTs can be observed by HRTEM. Moreover, a related growth mechanism is proposed to explain the growth of such novel nanocomposites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Che G, Lakshmi BB, Fisher ER, Martin CR (1998) Carbon nanotubule membranes for electrochemical energy storage and production. Nature 393:346–349

    Article  CAS  Google Scholar 

  2. Girishkumar G, Hall TD, Vinodgopal K, Kamat PV (2006) Single wall carbon nanotube supports for portable direct methanol fuel cells. J Phys Chem B 110:107–114

    Article  CAS  Google Scholar 

  3. Chen K, Bell AT, Iglesia E (2002) The relationship between the electronic and redox properties of dispersed metal oxides and their turnover rates in oxidative dehydrogenation reactions. J Catal 209:35–42

    Article  CAS  Google Scholar 

  4. Sysoev VV, Button BK, Wepsiec K, Dmitriev S, Kolmakov A (2006) Toward the nanoscopic “electronic nose”: hydrogen vs carbon monoxide discrimination with an array of individual metal oxide nano-and mesowire sensors. Nano Lett 6:1584–1588

    Article  CAS  Google Scholar 

  5. Wang YG, Li HQ, Xia YY (2006) Ordered whiskerlike polyaniline grown on the surface of mesoporous carbon and its electrochemical capacitance performance. Adv Mater 18:2619–2623

    Article  CAS  Google Scholar 

  6. Ding S, Chen JS, Lou XW (2011) One-dimensional hierarchical structures composed of novel metal oxide nanosheets on a carbon nanotube backbone and their lithium-storage properties. Adv Funct Mater 21:4120–4125

    Article  CAS  Google Scholar 

  7. Du N, Zhang H, Chen B, Ma X, Huang X, Tu J, Yang D (2009) Synthesis of polycrystalline SnO2 nanotubes on carbon nanotube template for anode material of lithium-ion battery. Mater Res Bull 44:211–215

    Article  CAS  Google Scholar 

  8. Noerochim L, Wang JZ, Chou SL, Li HJ, Liu HK (2010) SnO2-coated multiwall carbon nanotube composite anode materials for rechargeable lithium-ion batteries. Electrochim Acta 56:314–320

    Article  CAS  Google Scholar 

  9. Du G, Zhong C, Zhang P, Guo Z, Chen Z, Liu H (2010) Tin dioxide/carbon nanotube composites with high uniform SnO2 loading as anode materials for lithium ion batteries. Electrochim Acta 55:2582–2586

    Article  CAS  Google Scholar 

  10. Zhu CL, Zhang ML, Qiao YJ, Gao P, Chen YJ (2010) High capacity and good cycling stability of multi-walled carbon nanotube/SnO2 core–shell structures as anode materials of lithium-ion batteries. Mater Res Bull 45:437–441

    Article  CAS  Google Scholar 

  11. Dai K, Peng T, Ke D, Wei B (2009) Photocatalytic hydrogen generation using a nanocomposite of multi-walled carbon nanotubes and TiO2 nanoparticles under visible light irradiation. Nanotechnology 20:125603

    Article  Google Scholar 

  12. Fan W, Gao L, Sun J (2006) Anatase TiO2-coated multi-wall carbon nanotubes with the vapor phase method. J Am Ceram Soc 89:731–733

    Article  CAS  Google Scholar 

  13. Liu B, Zeng HC (2008) Carbon nanotubes supported mesoporous mesocrystals of anatase TiO2. Chem Mater 20:2711–2718

    Article  CAS  Google Scholar 

  14. Wang Y, Lee JY, Zeng HC (2005) Polycrystalline SnO2 nanotubes prepared via infiltration casting of nanocrystallites and their electrochemical application. Chem Mater 17:3899–3903

    Article  CAS  Google Scholar 

  15. Du N, Zhang H, Chen BD, Ma XY, Liu ZH, Wu JB, Yang DR (2007) Porous indium oxide nanotubes: layer-by-layer assembly on carbon-nanotube templates and application for room-temperature NH3 gas sensors. Adv Mater 19:1641–1645

    Article  CAS  Google Scholar 

  16. Sun Z, Yuan H, Liu Z, Han B, Zhang X (2005) A highly efficient chemical sensor material for H2S: α-Fe2O3 nanotubes fabricated using carbon nanotube templates. Adv Mater 17:2993–2997

    Article  CAS  Google Scholar 

  17. Satishkumar BC, Govindaraj A, Vogl EM, Basumallick L, Rao CNR (1997) Oxide nanotubes prepared using carbon nanotubes as templates. J Mater Res 12:604–606

    Article  CAS  Google Scholar 

  18. Zhang H, Cao G, Wang Z, Yang Y, Shi Z, Gu Z (2008) Growth of manganese oxide nanoflowers on vertically-aligned carbon nanotube arrays for high-rate electrochemical capacitive energy storage. Nano Lett 8:2664–2668

    Article  CAS  Google Scholar 

  19. Wu F, Wang C, Wu MH, Vinodgopal K, Dai GP (2018) Large area synthesis of vertical aligned metal oxide nanosheets by thermal oxidation of stainless steel mesh and foil. Materials 11:884

    Article  Google Scholar 

  20. Kumar M, Ando Y (2010) Chemical vapor deposition of carbon nanotubes: a review on growth mechanism and mass production. J Nanosci Nanotechnol 10:3739–3758

    Article  CAS  Google Scholar 

  21. Liu F, Zhang X, Cheng J, Tu J, Kong F, Huang W, Chen C (2003) Preparation of short carbon nanotubes by mechanical ball milling and their hydrogen adsorption behavior. Carbon 41:2527–2532

    Article  CAS  Google Scholar 

  22. Thostenson ET, Ren Z, Chou TW (2001) Advances in the science and technology of carbon nanotubes and their composites: a review. Compos Sci Technol 61:1899–1912

    Article  CAS  Google Scholar 

  23. Bradford PD, Wang X, Zhao H, Maria JP, Jia Q, Zhu YT (2010) A novel approach to fabricate high volume fraction nanocomposites with long aligned carbon nanotubes. Compos Sci Technol 70:1980–1985

    Article  CAS  Google Scholar 

  24. Lim H, Jung H, Park C, Joo S (2002) A new process for removal of catalyst in carbon nanotube grown by hot-filament chemical vapor deposition. Jpn J Appl Phys 41:4686

    Article  CAS  Google Scholar 

  25. Stypula B, Stoch J (1994) The characterization of passive films on chromium electrodes by XPS. Corros Sci 36:2159–2167

    Article  CAS  Google Scholar 

  26. Gaspar AB, Perez CAC, Dieguez LC (2005) Characterization of Cr/SiO2 catalysts and ethylene polymerization by XPS. Appl Surf Sci 252:939–949

    Article  CAS  Google Scholar 

  27. Huang X, Zhao G, Wang P, Zheng H, Dong W, Wang G (2018) Ce1-xCrxO2−δ nanocrystals as efficient catalysts for the selective oxidation of cyclohexane to KA oil at low temperature under ambient pressure. ChemCatChem 10:1406–1413

    Article  CAS  Google Scholar 

  28. Deng S, Wang S, Wang L, Liu J, Wang Y (2017) Influence of chloride on passive film chemistry of 304 stainless steel in sulphuric acid solution by glow discharge optical emission spectrometry analysis. Int J Electrochem Sc 12:1106–1117

    Article  CAS  Google Scholar 

  29. Peng H, Mo Z, Liao S, Liang H, Yang L, Luo F, Zhang B (2013) High performance Fe-and N-doped carbon catalyst with graphene structure for oxygen reduction. Sci Rep 3:1765

    Article  Google Scholar 

  30. Yazdanbakhsh A, Hashempour Y, Ghaderpouri M (2018) Performance of granular activated carbon/nanoscale zero-valent iron for removal of humic substances from aqueous solution based on experimental design and response surface modeling. Glob Nest J 20:57–68

    Google Scholar 

  31. Wang HB, Wang H, Wang XN, Zhang J, Wu S, Duan JX, Jiang Y (2011) Organic co-decomposition method for the synthesis of Mn and Co doped ZnO submicrometer crystals: photoluminescence and magnetic properties. Phys Status Solidi A 208:2393–2398

    Article  CAS  Google Scholar 

  32. Zeng F, Pan Y, Yang Y, Li Q, Li G, Hou Z, Gu G (2016) Facile construction of Mn3O4–MnO2 hetero-nanorods/graphene nanocomposite for highly sensitive electrochemical detection of hydrogen peroxide. Electrochim Acta 196:587–596

    Article  CAS  Google Scholar 

  33. Dondi M, Lyubenova TS, Carda JB, Ocana M (2009) M-doped Al2TiO5 (M = Cr, Mn, Co) solid solutions and their use as ceramic pigments. J Am Ceram Soc 92:1972–1980

    Article  CAS  Google Scholar 

  34. Pimenta MA, Dresselhaus G, Dresselhaus MS, Cancado LG, Jorio A, Saito R (2007) Studying disorder in graphite-based systems by Raman spectroscopy. Phys Chem Chem Phys 9:1276–1290

    Article  CAS  Google Scholar 

  35. Dai GP, Wu MH, Taylor DK, Brennaman MK, Vinodgopal K (2012) Hybrid 3D graphene and aligned carbon nanofiber array architectures. RSC Adv 2:8965–8968

    Article  CAS  Google Scholar 

  36. Meng F, Wang Y, Wang Q, Xu X, Jiang M, Zhou X, Zhou Z (2018) High-purity helical carbon nanotubes by trace-water-assisted chemical vapor deposition: large-scale synthesis and growth mechanism. Nano Res 11:3327–3339

    Article  CAS  Google Scholar 

  37. Xie K, Yang F, Ebbinghaus P, Erbe A, Muhler M, Xia W (2015) A reevaluation of the correlation between the synthesis parameters and structure and properties of nitrogen-doped carbon nanotubes. J Energy Chem 24:407–415

    Article  Google Scholar 

  38. Zuo J, Xu C, Hou B, Wang C, Xie Y, Qian Y (1996) Raman spectra of nanophase Cr2O3. J Raman Spectrosc 27:921–923

    Article  CAS  Google Scholar 

  39. Oh SJ, Cook DC, Townsend HE (1998) Characterization of iron oxides commonly formed as corrosion products on steel. Hyperfine Interact 112:59–66

    Article  CAS  Google Scholar 

  40. Zhang P, Zhan Y, Cai B, Hao C, Wang J, Liu C, Chen Q (2010) Shape-controlled synthesis of Mn3O4 nanocrystals and their catalysis of the degradation of methylene blue. Nano Res 3:235–243

    Article  CAS  Google Scholar 

  41. Schwinger W, Haring J, Jantscher A, Haubner R, Gerger I, Bodnarchuk M, Schöftner R (2008) Preparation of catalytic nano-particles and growth of aligned CNTs with HF-CVD. J Phys Conf Ser 100:052092

    Article  Google Scholar 

  42. Sawant SY, Somani RS, Bajaj HC (2010) A solvothermal-reduction method for the production of horn shaped multi-wall carbon nanotubes. Carbon 48:668–672

    Article  CAS  Google Scholar 

  43. Gao R, Wang ZL, Fan S (2000) Kinetically controlled growth of helical and zigzag shapes of carbon nanotubes. J Phys Chem B 104:1227–1234

    Article  CAS  Google Scholar 

  44. Fonseca A, Hernadi K, Nagy JB, Lambin P, Lucas AA (1995) Model structure of perfectly graphitizable coiled carbon nanotubes. Carbon 33:1759–1775

    Article  CAS  Google Scholar 

  45. Wang ZL, Kang ZC (1996) Pairing of pentagonal and heptagonal carbon rings in the growth of nanosize carbon spheres synthesized by a mixed-valent oxide-catalytic carbonization process. J Phys Chem 100:17725–17731

    Article  CAS  Google Scholar 

  46. Ihara S, Itoh S (1995) Helically coiled and toroidal cage forms of graphitic carbon. Carbon 33:931–939

    Article  CAS  Google Scholar 

Download references

Acknowledgements

G-PD acknowledges the National Natural Science Foundation of China (Grants 51462022 and 51762032) and the Natural Science Foundation Major Project of Jiangxi Province of China (Grant 20152ACB20012) for financial support of this research. CW acknowledges the Graduate Innovation Foundation of Jiangxi Province (Grant YC2018-S015). KV and MHW acknowledge the support of NSF CREST Award HRD-0833184 and the NSF PREM Award DMR 1523617. The assistance of Dr. AS Kumbhar (SEM and HRTEM measurements), CHANL at UNC Chapel Hill, is also greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to K. Vinodgopal or Gui-Ping Dai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, F., Wang, C., Hu, HY. et al. One-step synthesis of hierarchical metal oxide nanosheet/carbon nanotube composites by chemical vapor deposition. J Mater Sci 54, 1291–1303 (2019). https://doi.org/10.1007/s10853-018-2889-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-2889-9

Keywords

Navigation