Skip to main content
Log in

Response of microstructure to annealing in in situ Cu–Nb microcomposite

  • Metals
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this paper, the shape instabilities of Nb in in situ Cu–Nb microcomposite wires after exposed to different annealing treatments have been analyzed using scanning electron microscopy and transmission electron microscopy technologies. The results suggest that the thermal stability is related to misorientation among the adjacent grains at the triple joint. Most of the triple joints are composed of low-angle grain boundaries in Nb ribbons and Cu–Nb interfaces of (111)Cu//(011)Nb. These triple joints provide dragging force to interface motion so that neither the grains nor the interface boundaries show substantial changes below 500 °C. Above 500 °C, the Nb ribbons start to dissociate at the triple joints within Nb phase due to the stored energy by misorientation/distortion in Nb. Grooves and pits formed at these regions tend to promote the spheroidization of the Nb phase. Such results may enrich the studies on the microstructure evolution of Cu-based microcomposite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Notes

  1. Boundary splitting is a process where atoms migrate away from the sub-boundaries and the phase pinches off.

References

  1. Sandim HRZ, Sandim MJR, Bernardi HH, Lins JFC, Raabe D (2004) Annealing effects on the microstructure and texture of a multifilamentary Cu–Nb composite wire. Scr Mater 51:1099–1104

    Article  CAS  Google Scholar 

  2. Thilly L, Renault PO, Vidal V, Lecouturier F, Van Petegem S, Stuhr U, Van Swygenhoven H (2006) Plasticity of multiscale nanofilamentary Cu/Nb composite wires during in situ neutron diffraction: Codeformation and size effect. Appl Phys Lett 88:191906/191901–191906/191903

    Article  Google Scholar 

  3. Gu T, Castelnau O, Forest S, Hervé-Luanco E, Lecouturier F, Proudhon H, Thilly L (2017) Multiscale modeling of the elastic behavior of architectured and nanostructured Cu–Nb composite wires. Int J Solids Struct 121:148–162

    Article  CAS  Google Scholar 

  4. Budiman AS, Narayanan KR, Li N, Wang J, Tamura N, Kunz M, Misra A (2015) Plasticity evolution in nanoscale Cu/Nb single-crystal multilayers as revealed by synchrotron X-ray microdiffraction. Mater Sci Eng A 635:6–12

    Article  CAS  Google Scholar 

  5. Badinier G, Sinclair CW, Allain S, Bouaziz O (2014) The Bauschinger effect in drawn and annealed nanocomposite Cu–Nb wires. Mater Sci Eng A 597:10–19

    Article  CAS  Google Scholar 

  6. Cui BZ, Xin Y, Han K (2007) Structure and transport properties of nanolaminate Cu–Nb composite foils by a simple fabrication route. Scr Mater 56:879–882

    Article  CAS  Google Scholar 

  7. Pourrahimi S, Nayeb-Hashemi H, Foner S (1992) Strength and microstructure of powder metallurgy processed restacked Cu–Nb microcomposites. Metall Trans A 23A:573–586

    Article  CAS  Google Scholar 

  8. Spitzig WA, Pelton AR, Laabs FC (1987) Characterization of the strength and microstructure of heavily cold worked Cu-Nb composites. Acta Metall 35:2427–2442

    Article  CAS  Google Scholar 

  9. Sandim MJR, Sandim HRZ, Bernardi HH, Shigue CY, das Virgens MG, Ghivelder L, Awaji S, Watanabe K et al (2005) Annealing effects on the microstructure, electrical, and magnetic properties of jelly-rolled Cu–Nb composite wires. Supercond Sci Technol 18:35–40

    Article  CAS  Google Scholar 

  10. Chakkingal U, Suriadi AB, Thomson PF (1999) The development of microstructure and the influence of processing route during equal channel angular drawing of pure aluminum. Mater Sci Eng A 266:241–249

    Article  Google Scholar 

  11. Chakkingal U, Suriadi AB, Thomson PF (1998) Microstructure development during equal channel angular drawing of Al at room temperature. Scr Mater 39(6):677–684

    Article  CAS  Google Scholar 

  12. Okitsu Y, Takata N, Tsuji N (2009) A new route to fabricate ultrafine-grained structures in carbon steels without severe plastic deformation. Scr Mater 60(2):76–79

    Article  CAS  Google Scholar 

  13. Figueiredo RB, Langdon TG (2010) Grain refinement and mechanical behavior of a magnesium alloy processed by ECAP. J Mater Sci 45(17):4827–4836. https://doi.org/10.1007/s10853-010-4589-y

    Article  CAS  Google Scholar 

  14. Valiev RZ, Enikeev NA, Langdon TG (2011) Towards superstrength of nanostructured metals and alloys, produced by SPD. Kovove Mater 49(1):1–9

    CAS  Google Scholar 

  15. Zhao YH, Bingert JF, Liao XZ, Cui BZ, Han K, Sergueeva AV, Mukherjee AK, Valiev RZ et al (2006) Simultaneously increasing the ductility and strength of ultra-fine-grained pure copper. Adv Mater 18:2949–2953

    Article  CAS  Google Scholar 

  16. Miyamoto H, Mimaki T, Vinogradov A, Hashimoto S (2002) Corrosion fatigue of ultra-fine grain copper fabricated by severe plastic deformation. Ann Chim Sci Mater 27:S197

    Google Scholar 

  17. Estrin Y, Vinogradov A (2013) Extreme grain refinement by severe plastic deformation: a wealthof challenging science. Acta Mater 61(3):782–817

    Article  CAS  Google Scholar 

  18. Tahawy ME, Pereira PHR, Huang Y, Park H, Choe H, Langdon TG, Gubicza J (2018) Exceptionally high strength and good ductility in an ultrafine-grained 316L steel processed by severe plastic deformation and subsequent annealing. Mater Lett 214:240–242

    Article  Google Scholar 

  19. Huang X, Hansen N, Tsuji N (2006) Hardening by annealing and softening by deformation in nanostructured metals. Science 312:249–251

    Article  CAS  Google Scholar 

  20. Mavlyutov AM, Latynina TA, Murashkin MY, Valiev RZ, Orlova TS (2017) Effect of annealing on the microstructure and mechanical properties of ultrafine-grained commercially pure Al. Phys Solid State 59(10):1970–1977

    Article  CAS  Google Scholar 

  21. An XH, Wu SD, Zhang ZF, Figueiredo RB, Gao N, Langdon TG (2012) Enhanced strength-ductility synergy in nanostructured Cu and Cu–Al alloys processed by high-pressure torsion and subsequent annealing. Scr Mater 66(5):227–230

    Article  CAS  Google Scholar 

  22. Lin Y, Liu W, Wang L, Lavernia EJ (2013) Ultra-fine grained structure in Al–Mg induced by discontinuous dynamic recrystallization under moderate straining. Mater Sci Eng A 573:197–204

    Article  CAS  Google Scholar 

  23. Sharma G, Ramanujan RV, Tiwar GP (2000) Instability mechanisms in lamellar microstructures. Acta Mater 48:875–889

    Article  CAS  Google Scholar 

  24. Budiman AS, Li N, Wei Q, Baldwin JK, Xiong J, Luo H, Trugman D, Jia QX et al (2011) Growth and structural characterization of epitaxial Cu/Nb multilayers. Thin Solid Films 519(13):4137–4143

    Article  CAS  Google Scholar 

  25. Sandim MJR, Sandim HRZ, Shigue CY, Filgueira M, Ghivelder L (2003) Annealing effects on the magnetic properties of a multifilamentary Cu–Nb composite. Supercond Sci Technol 16:307–313

    Article  CAS  Google Scholar 

  26. Sallez N, Boulnat X, Borbély A, Béchade JL, Fabrègue D, Perez M, de Carlan Y, Hennet L et al (2015) In situ characterization of microstructural instabilities: recovery, recrystallization and abnormal growth in nanoreinforced steel powder. Acta Mater 87:377–389

    Article  CAS  Google Scholar 

  27. Mara NA, Misra A, Hoagland RG, Sergueeva AV, Tamayo T, Dickerson P, Mukherjee AK (2008) High-temperature mechanical behavior/microstructure correlation of Cu/Nb nanoscale multilayers. Mater Sci Eng A 493(1–2):274–282

    Article  Google Scholar 

  28. Zheng S, Carpenter JS, McCabe RJ, Beyerlein IJ, Mara NA (2014) Engineering interface structures and thermal stabilities via SPD processing in bulk nanostructured metals. Sci Rep 4:4226

    Article  Google Scholar 

  29. Deng L, Han K, Wang B, Yang X, Liu Q (2015) Thermal stability of Cu–Nb microcomposite wires. Acta Mater 101:181–188

    Article  CAS  Google Scholar 

  30. Schneider J, Cobb J, Carpenter JS, Mara NA (2018) Maintaining nano-lamellar microstructure in friction stir welding (FSW) of accumulative roll bonded (ARB) Cu–Nb nano-lamellar composites (NLC). J Mater Sci Technol 34(1):92–101

    Article  Google Scholar 

  31. Sandim MJR, Shigue CY, Ribeiro LG, Filgueira M, Sandim HRZ (2002) Annealing effects on the electrical and superconducting properties of a Cu–15 vol%Nb composite conductor. IEEE Trans Appl Supercond 12:1195–1198

    Article  Google Scholar 

  32. Misra A, Hoagland RG, Kung H (2004) Thermal stability of self-supported nanolayered Cu/Nb ribbons. Philos Mag 84:1021–1028

    Article  CAS  Google Scholar 

  33. Hong SI, Hill MA (2000) Microstructural stability of Cu–Nb microcomposite wires fabricated by the bundling and drawing process. Mater Sci Eng A 281:189–197

    Article  Google Scholar 

  34. Bouaziz O (2007) Embury JD (2007) Microstructural design for advance structural steels. Mater Sci Forum 42(539–543):42–50

    Article  Google Scholar 

  35. Beyerlein IJ, Caro A, Demkowicz MJ, Mara NA, Misra A, Uberuaga BP (2013) Radiation damage tolerant nanomaterials. Mater Today 16(11):443–449

    Article  CAS  Google Scholar 

  36. Beyerlein IJ, Mayeur JR (2015) Mesoscale investigations for the evolution of interfaces in plasticity. Curr Opin Solid State Mater 19(4):203–211

    Article  CAS  Google Scholar 

  37. Beyerlein IJ, Mayeur JR, McCabe RJ, Zheng SJ, Carpenter JS, Mara NA (2014) Influence of slip and twinning on the crystallographic stability of bimetal interfaces in nanocomposites under deformation. Acta Mater 72:137–147

    Article  CAS  Google Scholar 

  38. McCabe RJ, Carpenter JS, Vogel S, Mara NA, Beyerlein IJ (2015) Recrystallization and grain growth in accumulative roll-bonded metal composites. JOM 67(12):2810–2819

    Article  CAS  Google Scholar 

  39. Zheng S, Carpenter JS, Wang J, Mara NA, Beyerlein IJ (2014) An interface facet driven Rayleigh instability in high-aspect-ratio bimetallic nanolayered composites. Appl Phys Lett 105(111901):1–5

    Google Scholar 

  40. Deng L, Han K, Hartwig KT, Siegrist TM, Dong L, Sun Z, Yang X, Liu Q (2014) Hardness, electrical resistivity, and modeling of in situ Cu–Nb microcomposites. J Alloys Compd 602:331–338

    Article  CAS  Google Scholar 

  41. Dubois JB, Thilly L, Renault PO, Lecouturier F, Di Michiel M (2010) Thermal stability of nanocomposite metals: in situ observation of anomalous residual stress relaxation during annealing under synchrotron radiation. Acta Mater 58:6504–6512

    Article  CAS  Google Scholar 

  42. Lewis AC, Josell D, Weihs TP (2003) Stability in thin ribbon multilayers and microlaminates: the role of free energy, structure, and orientation at interfaces and grain boundaries. Scr Mater 48:1079–1085

    Article  CAS  Google Scholar 

  43. Wan H, Shen Y, Wang J, Shen Z, Jin X (2012) A predictive model for microstructure evolution in metallic multilayers with immiscible constituents. Acta Mater 60:6869–6881

    Article  CAS  Google Scholar 

  44. Srinivasan D, Subramanian PR (2007) Kirkendall porosity during thermal treatment of Mo–Cu nanomultilayers. Mater Sci Eng A 459:145–150

    Article  Google Scholar 

  45. Zheng S, Beyerlein IJ, Carpenter JS, Kang K, Wang J, Han W, Mara NA (2013) High-strength and thermally stable bulk nanolayered composites due to twin-induced interfaces. Nat Commun 2651:1–8

    Google Scholar 

  46. Thilly L, Lecouturier F, Von Stebut J (2002) Size-induced enhanced mechanical properties of nanocomposite copper/niobium wires: nanoindentation study. Acta Mater 50:5049–5065

    Article  CAS  Google Scholar 

  47. Man O, Panteˇlejev L, Kunz L (2010) Study of thermal stability of ultrafine-grained copper by means of electron back scattering diffraction. Mater Trans 51:209–213

    Article  CAS  Google Scholar 

  48. Gu CF, Davies CHJ (2010) Thermal stability of ultrafine-grained copper during high speed micro-extrusion. Mater Sci Eng A 527:1791–1799

    Article  Google Scholar 

  49. Saldana C, King AH, Stach EA, Compton WD, Chandrasekar S (2011) Vacancies, twins, and the thermal stability of ultrafine-grained copper. Appl Phys Lett 99:231911–231913

    Article  Google Scholar 

  50. Cao P, Zhang D (2006) Thermal stability of nanocrystalline copper ribbons. Int J Mod Phys B 20:3830–3835

    Article  CAS  Google Scholar 

  51. Popova EN, Popov VV, Romanov EP, Pilyugin VP (2006) Thermal stability of nanocrystalline Nb produced by severe plastic deformation. Phys Met Metall 101:52–57

    Article  Google Scholar 

  52. Popov VV, Popova EN, Stolbovsky AV, Pilyugin VP (2011) The structure of Nb obtained by severe plastic deformation and its thermal stability. Mater Sci Forum 667–669:409–414

    Google Scholar 

  53. Wang YL, Lapovok R, Wang JT, Qi YS, Estrin Y (2015) Thermal behavior of copper processed by ECAP with and without back pressure. Mater Sci Eng A 628:21–29

    Article  CAS  Google Scholar 

  54. Ma H, Zou Y, Sologubenko AS, Spolenak R (2015) Copper thin ribbons by ion beam assisted deposition: strong texture, superior thermal stability and enhanced hardness. Acta Mater 98:17–28

    Article  CAS  Google Scholar 

  55. Li BL, Goldfrey A, Liu Q (2004) Subdivision of original grains during cold-rolling of interstitial-free steel. Scr Mater 50:879–883

    Article  CAS  Google Scholar 

  56. Field DP, Bradford LT, Nowell MM, Lillo TM (2007) The role of annealing twins during recrystallization of Cu. Acta Mater 55:4233–4241

    Article  CAS  Google Scholar 

  57. El-Dasher BS, Adams BL, Rollett AD (2003) Viewpoint: experimental recovery of geometrically necessary dislocation density in polycrystals. Scr Mater 48:141

    Article  CAS  Google Scholar 

  58. Dupouy F, Snoeck E, Casanove MJ, Roucau C, Peyrade JP, Askenazy S (1996) Microstructural characterization of high strength and high conductivity nanocomposite wires. Scr Mater 34(7):1067

    Article  CAS  Google Scholar 

  59. Snoeck E, Lecouturier F, Thilly L, Casanove MJ, Rakoto H, Coffe G, Askenazy S, Peyrade JP et al (1998) Microstructural studies of in Situ produced filamentary Cu/Nb wires. Scr Mater 38(11):1643–1648

    Article  CAS  Google Scholar 

  60. Leprince-Wang Y, Han K, Huang Y, Yu-Zhang K (2003) Microstructure in Cu–Nb microcomposites. Mater Sci Eng A 351(1–2):214–223

    Article  Google Scholar 

  61. Lubensky TC, Socolar JES, Steinhardt PJ, Bancel PA, Heiney PA (1986) Distortion and peak broadening in quasicrystal diffraction patterns. Phys Rev Lett 57:1440–1443

    Article  CAS  Google Scholar 

  62. Bobylev SV, Ovid’ko IA (2017) Stress-driven migration, convergence and splitting transformations of grain boundaries in nanomaterials. Acta Mater 124:333–342

    Article  CAS  Google Scholar 

  63. Lei R, Wang M, Wang H, Xu S (2016) New insights on the formation of supersaturated Cu–Nb solid solution prepared by mechanical alloying. Mater Charact 118:324–331

    Article  CAS  Google Scholar 

  64. Humphreys FJ, Hatherly M (2004) Recrystallization and related annealing phenomena, 2nd edn. Elsevier, Oxford

    Google Scholar 

  65. Lian J, Valiev RZ, Baudelet B (1995) On the enhanced grain growth in ultrafine grained metals. Acta Metall Mater 43:4165–4170

    Article  CAS  Google Scholar 

  66. Winning M, Gottstein G, Shvindlerman LS (2002) On the mechanisms of grain boundary migration. Acta Mater 50:353–363

    Article  CAS  Google Scholar 

  67. De Knijf D, Santofimia MJ, Shi H, Bliznuk V, Föjer C, Petrov R, Xu W (2015) In situ austenite–martensite interface mobility study during annealing. Acta Mater 90:161–168

    Article  Google Scholar 

  68. Raabe D, Ohsaki S, Hono K (2009) Mechanical alloying and amorphization in Cu–Nb–Ag in situ composite wires studied by transmission electron microscopy and atom probe tomography. Acta Mater 57:5254–5263

    Article  CAS  Google Scholar 

  69. Voorhees PW (1992) Ostwald ripening of two-phase mixtures. Annu Rev Mater Sci 22:197–215

    Article  CAS  Google Scholar 

  70. Deng LP, Wang BS, Xiang HL, Yang XF, Niu RM, Han K (2016) Effect of annealing on the microstructure and properties of in situ Cu–Nb microcomposite wires. Acta Metall Sin (Engl Lett) 29:668–673

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors greatly acknowledge the support of the National High Magnetic Field Laboratory through US National Science Foundation Cooperative Agreement No. DMR-1157490. This research is also funded by the National Natural Science Foundation of China (Grant Nos. 51601039, 51301040, 51541103), the Danish National Research Foundation, the National Natural Science Foundation of China for Non-metals (Grant No. 51261130091), the Natural Science Foundation of Fujian Province, China (Grant No. 2016J05119), and the Collaborative Innovation Center of High-End Equipment Manufacturing in Fujian, China. Thanks are also given to Dr. Yan Xin, Dr. Yifeng Su, Dr. Xiaowei Zuo and Dr. Lei Qu for their assistance with the testing.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Liping Deng or Ke Han.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, L., Wang, B., Han, K. et al. Response of microstructure to annealing in in situ Cu–Nb microcomposite. J Mater Sci 54, 840–850 (2019). https://doi.org/10.1007/s10853-018-2865-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-2865-4

Keywords

Navigation