Skip to main content

Advertisement

Log in

Reducing volumetric shrinkage of photopolymerizable materials using reversible disulfide-bond reactions

  • Polymers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

We introduce a new strategy for reduction in volumetric shrinkage of free radical photopolymerization. Our strategy is based on the reversible reaction of disulfide bonds under UV irradiation. Here, we synthesized 2,2′-dithiodiethanol diacrylate (DSDA), an acrylate monomer with disulfide bonds. The homolytic photocleavage of DSDA under UV irradiation generates thiyl radicals that can initiate polymerization. Volumetric shrinkage can decrease to 0.1% through a repeated “contraction–expansion–contraction” volume-adjustable process. We identified the mechanism that underlies volumetric shrinkage reduction. The photocleavage rate of DSDA under UV irradiation is slower than that of the added photoinitiator. Moreover, in the presence of the photoinitiator, most of the generated thiyl radicals undergo restoration and exchange reactions instead of polymerization initiation or chain termination. The free volume and structure of the polymer network are effectively tuned by the dynamic and reversible processes of gradual disulfide-bond homolysis and recombination during fast photopolymerization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Scheme 2
Figure 6
Scheme 3
Figure 7
Figure 8
Scheme 4
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16

Similar content being viewed by others

References

  1. Lee TT, García JR, Paez JI, Singh A, Phelps EA, Weis S, Shafiq Z, Shekaran A, Campo AD, García AJ (2015) Light-triggered in vivo activation of adhesive peptides regulates cell adhesion, inflammation and vascularization of biomaterials. Nat Mater 14:352–360

    Article  CAS  Google Scholar 

  2. Chen K, Zhou S, Yang S, Wu L (2015) Fabrication of all- water- based self- repairing superhydrophobic coatings based on UV- responsive microcapsules. Adv Func Mater 25:1035–1041

    Article  CAS  Google Scholar 

  3. Crivello JV, Reichmanis E (2013) Photopolymer materials and processes for advanced technologies. Chem Mater 26:533–548

    Article  Google Scholar 

  4. Dzwilewski A, Wågberg T, Edman L (2009) Photo-induced and resist-free imprint patterning of fullerene materials for use in functional electronics. J Am Chem Soc 131:4006–4011

    Article  CAS  Google Scholar 

  5. Hernandez HL, Kang SK, Lee OP, Hwang SW, Kaitz JA, Inci B, Chan WP, Chung S, Sottos NR, Moore JS (2014) Triggered transience of metastable poly(phthalaldehyde) for transient electronics. Adv Mater 26:7637–7642

    Article  CAS  Google Scholar 

  6. Wang Z, Shen Y, Haapasalo M (2014) Dental materials with antibiofilm properties. Dent Mater Off Publ Acad Dent Mater 30:1–16

    Google Scholar 

  7. Chen G, Ni M, Peng H, Huang F, Liao Y, Wang M, Zhu J, Roy VA, Xie X (2017) Photoinitiation and inhibition under monochromatic green light for storage of colored 3D images in holographic polymer-dispersed liquid crystals. ACS Appl Mater Interfaces 9:1810–1819

    Article  CAS  Google Scholar 

  8. Scott TF, Schneider AD, Cook WD, Bowman CN (2005) Photoinduced plasticity in cross-linked polymers. Science 308:1615–1617

    Article  CAS  Google Scholar 

  9. Liu J, Rad IY, Sun F, Stansbury JW (2014) Photo-reactive nanogels as a means to tune properties during polymer network formation. Polym Chem 5:227–233

    Article  CAS  Google Scholar 

  10. Prof CEH, Prof CNB (2010) Thiol-ene click chemistry. Angew Chem Int Ed 49:1540–1573

    Article  Google Scholar 

  11. Klikovits N, Knaack P, Bomze D, Krossing I, Liska R (2017) Novel photoacid generator for cationic photopolymerization. Polym Chem 8:4414–4421

    Article  CAS  Google Scholar 

  12. Pineda P, Tyagi P, Agarwal S (2015) Low volume shrinkage polymers by photo polymerization of 1,1-Bis(ethoxycarbonyl)-2-vinylcyclopropanes. Polym Chem 6:2297–2304

    Article  Google Scholar 

  13. Martin-Gallego M, Lopez-Manchado MA, Calza P, Roppolo I, Sangermano M (2015) Gold-functionalized graphene as conductive filler in UV-curable epoxy resin. J Mater Sci 50:605–610. https://doi.org/10.1007/s10853-014-8619-z

    Article  CAS  Google Scholar 

  14. Ji L, Chang W, Cui M, Nie J (2013) Photopolymerization kinetics and volume shrinkage of 1,6-hexanediol diacrylate at different temperature. J Photochem Photobiol A 252:216–221

    Article  CAS  Google Scholar 

  15. Marchesi G, Breschi L, Antoniolli F, Lenarda RD, Ferracane J, Cadenaro M (2010) Contraction stress of low-shrinkage composite materials assessed with different testing systems. Dent Mater Off Publ Acad Dent Mater 26:947–953

    CAS  Google Scholar 

  16. Agarwal A, Diedrich JK, Julian RR, Chem A (2011) Direct elucidation of disulfide bond partners using ultraviolet photodissociation mass spectrometry. Anal Chem 83:6455–6458

    Article  CAS  Google Scholar 

  17. Prof PAF, Prof MJR (2004) Theoretical insights into the mechanism for thiol/disulfide exchange. Chem Eur J 10:257–266

    Article  Google Scholar 

  18. Pepels M, Filot I, Klumperman B, Han G (2013) Self-healing systems based on disulfide–thiol exchange reactions. Polym Chem 4:4955–4965

    Article  CAS  Google Scholar 

  19. Du X, Li J, Welle A, Li L, Feng W, Levkin PA (2015) Reversible and rewritable surface functionalization and patterning via photodynamic disulfide exchange. Adv Mater 27:4997–5001

    Article  CAS  Google Scholar 

  20. Azcune I, Odriozola I (2016) Aromatic disulfide crosslinks in polymer systems: self-healing, reprocessability, recyclability and more. Eur Polym J 84:147–160

    Article  CAS  Google Scholar 

  21. Michal BT, Spencer EJ, Rowan SJ (2016) Stimuli-responsive reversible two-level adhesion from a structurally dynamic shape-memory polymer. ACS Appl Mater Interfaces 8:11041–11049

    Article  CAS  Google Scholar 

  22. Nicastri MC, Xega K, Li L, Xie J, Wang C, Linhardt RJ, Reitter JN, Mills KV (2013) An internal disulfide bond acts as a switch for intein activity. Biochemistry 52:5920–5927

    Article  CAS  Google Scholar 

  23. Li Y, Nese A, Matyjaszewski K, Sheiko SS (2013) Molecular tensile machines: anti-arrhenius cleavage of disulfide bonds. Macromolecules 46:7196–7201

    Article  CAS  Google Scholar 

  24. Sunder A, Mülhaupt R (2015) Addition-fragmentation free radical polymerization in the presence of olefinic dithioethers as chain transfer agents. Macromol Chem Phys 200:58–64

    Article  Google Scholar 

  25. Evans RA, Rizzardo E (2015) Free radical ring-opening polymerization of cyclic allylic sulfides: liquid monomers with low polymerization volume shrinkage. J Polym Sci Part A Polym Chem 39:202–215

    Article  Google Scholar 

  26. Li L, Feng W, Welle A, Levkin PA (2016) UV-induced disulfide formation and reduction for dynamic photopatterning. Angew Chem 55:13765–13769

    Article  CAS  Google Scholar 

  27. Zhao T, Zhang H, Newland B, Aied A, Zhou D, Wang W (2014) Significance of branching for transfection: synthesis of highly branched degradable functional poly(dimethylaminoethyl methacrylate) by vinyl oligomer combination. Angew Chem 53:6095–6100

    Article  CAS  Google Scholar 

  28. Wang J, Cheng J, Liu J, Gao Y, Sun F (2013) Self-floating ability and initiating gradient photopolymerization of acrylamide aqueous solution of a water-soluble polysiloxane benzophenone photoinitiator. Green Chem 15:2457–2465

    Article  CAS  Google Scholar 

  29. Chen C, Li M, Gao Y, Nie J, Sun F (2015) A study of nanogels with different polysiloxane chain lengths for photopolymerization stress reduction and modification of polymer network properties. RSC Adv 5:33729–33736

    Article  CAS  Google Scholar 

  30. Stoyanov S, Stoyanova T, Antonov L, Karagiannidis P, Akrivos P (1996) Thione-disulfide interchange of some heterocyclic tautomeric thiones and their symmetrical disulfides. Monatshefte Chem Chem Mon 127:495–504

    Article  CAS  Google Scholar 

  31. Hearn Christine H, Turcu Elena, Joens Jeffrey A (1990) The near UV absorption spectra of dimethyl sulfide, diethyl sulfide and dimethyl disulfide at T = 300 K. Atmos Environ Part A Gen Top 24:1939–1944

    Article  Google Scholar 

  32. Fagnoni M (2010) Modern molecular photochemistry of organic molecules. Wiley, New Jersey, p 474–476

  33. Han J, Jiang S, Gao Y, Sun F (2016) Intramolecular-initiating photopolymerization behavior of nanogels with the capability of reducing shrinkage. J Mater Chem C 4:10675–10683

    Article  CAS  Google Scholar 

  34. Heller NW, Clayton CR, Giles SL, Wynne JH, Walker ME, Wytiaz MJ (2017) Characterization of immiscibly blended polyurethane coatings part 1: selective staining for enhanced micro-Raman spectroscopy. J Coat Technol Res 14:163–175

    Article  CAS  Google Scholar 

  35. Kamada J, Koynov K, Corten C, Juhari A, Yoon JA, Urban MW, Balazs AC, Matyjaszewski K (2010) Redox responsive behavior of thiol/disulfide-functionalized star polymers synthesized via atom transfer radical polymerization. Macromolecules 43:4133–4139

    Article  CAS  Google Scholar 

  36. Xu Y, Chen D (2016) A novel self-healing polyurethane based on disulfide bonds. Macromol Chem Phys 217:1191–1196

    Article  CAS  Google Scholar 

  37. Wang CH, Huang CC, Lin LL, Chen W (2016) The effect of disulfide bonds on protein folding, unfolding, and misfolding investigated by FT-Raman spectroscopy. J Raman Spectrosc 47:940–947

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The financial support from the National Key R&D Plan (2017YFB0307800), the Special Funds of Jiangsu Province Key Research and Development (BE2015058), and National Natural Science Foundation of China (Grant No. 51273014) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fang Sun.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1096 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Jiang, S., Gao, Y. et al. Reducing volumetric shrinkage of photopolymerizable materials using reversible disulfide-bond reactions. J Mater Sci 53, 16169–16181 (2018). https://doi.org/10.1007/s10853-018-2778-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-2778-2

Keywords

Navigation