Skip to main content

Advertisement

Log in

High-pressure behavior and Hirshfeld surface analysis of nitrogen-rich materials: triazido-s-triazine (TAT) and triazido-s-heptazine (TAH)

  • Computation
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Triazido-s-triazine (TAT) and triazido-s-heptazine (TAH) are two kinds of effective nitrogen-rich precursors for carbon nitride nanomaterials and potential high-energy density materials. In this work, the high-pressure behavior (0–500 GPa) and Hirshfeld surface of crystalline TAT and TAH were studied in details to better compare and reveal their stabilities. Crystal and molecular structures of TAT and TAH largely changed with the increase in pressure. The distortion of rings happens at 171 GPa for TAT and 483 GPa for TAH. The azide/tetrazole (AZ/TZ) isomerization happens in crystalline TAT, and the tetrazole ring forms at 266 GPa for the first time, while this phenomenon has not been observed in crystalline TAH during the whole process. Hirshfeld surface analyses intuitively show that: (1) both compounds possess the planar conjugated molecular structures; (2) N…N nonbonding interactions contribute a lot to stabilize their crystal packings; and (3) TAH is much more resistant to high pressure and more stable than TAT. The systematic investigation gives a guidance to understand the physical and chemical behaviors of nitrogen-rich azidoheterocyclic materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Gillan EG (2000) Synthesis of nitrogen-rich carbon nitride networks from an energetic molecular azide precursor. Chem Mater 12:3906–3912

    Article  CAS  Google Scholar 

  2. Miller DR, Swenson DC, Gillan EG (2004) Synthesis and structure of 2,5,8-triazido-s-heptazine: an energetic and luminescent precursor to nitrogen-rich carbon nitrides. J Am Chem Soc 126:5372–5373

    Article  CAS  Google Scholar 

  3. Cheng F, Yan J, Zhou C, Chen B, Li P, Chen Z, Dong X (2016) An alkali treating strategy for the colloidization of graphitic carbon nitride and its excellent photocatalytic performance. J Colloid Interface Sci 468:103–109

    Article  CAS  Google Scholar 

  4. Hammerl A, Hiskey MA, Holl G, Klapötke TM, Polborn K, Stierstorfer J, Weigand JJ (2005) Azidoformamidinium and guanidinium 5,5′-azotetrazolate salts. Chem Mater 17:3784–3793

    Article  CAS  Google Scholar 

  5. Jaidann M, Roy S, Abou-Rachid H, Lussier L-S (2010) A DFT theoretical study of heats of formation and detonation properties of nitrogen-rich explosives. J Hazard Mater 176:165–173

    Article  CAS  Google Scholar 

  6. Hammerl A, Klapötke TM, Rocha R (2006) Azide-tetrazole ring-chain isomerism in polyazido-1,3,5-triazines, triazido-s-heptazine, and diazido tetrazines. Eur J Inorg Chem 2006:2210–2228

    Article  Google Scholar 

  7. Huynh M-HV, Hiskey MA, Pollard CJ, Montoya DP, Hartline EL, Gilardi R (2004) 4,4′,6,6′-tetra-substituted hydrazo- and azo-1, 3, 5-triazines. J Energ Mater 22:217–229

    Article  CAS  Google Scholar 

  8. Alkorta I, Blanco F, Elguero J, Claramunt RM (2010) The azido-tetrazole and diazo-1, 2, 3-triazole tautomerism in six-membered heteroaromatic rings and their relationships with aromaticity: azines and perimidine. Tetrahedron 66:2863–2868

    Article  CAS  Google Scholar 

  9. Lakshman MK, Singh MK, Parrish D, Balachandran R, Day BW (2010) Azide-tetrazole equilibrium of C-6 azidopurine nucleosides and their ligation reactions with alkynes. J Org Chem 75:2461–2473

    Article  CAS  Google Scholar 

  10. Wang F, Du H, Zhang J, Gong X (2012) First-principle study on high-pressure behavior of crystalline polyazido-1,3,5-triazine. J Phys Chem C 116:6745–6753

    Article  CAS  Google Scholar 

  11. Wang F, Du H, Liu H, Gong X (2012) Density functional theory study of high-pressure effect on crystalline 4,4′,6,6′-tetra (azido) hydrazo-1,3,5-triazine. J Comput Chem 33:1820–1830

    Article  CAS  Google Scholar 

  12. Laniel D, Downie LE, Smith JS, Savard D, Murugesu M, Desgreniers S (2014) High pressure study of a highly energetic nitrogen-rich carbon nitride, cyanuric triazide. J Chem Phys 141:234506. https://doi.org/10.1063/1.4902984

    Article  CAS  Google Scholar 

  13. Millar DI, Marshall WG, Oswald ID, Pulham CR (2010) High-pressure structural studies of energetic materials. Crystallogr Rev 16:115–132

    Article  CAS  Google Scholar 

  14. Dreger ZA, Stash AI, Yu Z-G, Chen Y-S, Tao Y (2017) High-pressure structural response of an insensitive energetic crystal: dihydroxylammonium 5,5′-bistetrazole-1,1′-diolate (TKX-50). J Phys Chem C 121:5761–5767

    Article  CAS  Google Scholar 

  15. Yang H, Huang Z, Zhang Y (2018) Effect of C60 on the phase transition behavior of a lipid bilayer under high pressure. RSC Adv 8:655–661

    Article  CAS  Google Scholar 

  16. McKinnon JJ, Spackman MA, Mitchell AS (2004) Novel tools for visualizing and exploring intermolecular interactions in molecular crystals. Acta Crystallogr B 60:627–668

    Article  Google Scholar 

  17. McKinnon JJ, Jayatilaka D, Spackman MA (2007) Towards quantitative analysis of intermolecular interactions with Hirshfeld surfaces. Chem Commun 37:3814–3816

    Article  Google Scholar 

  18. Mckinnon JJ, Mitchell AS, Spackman MA (2015) Hirshfeld surfaces: a new tool for visualising and exploring molecular crystals. Chem Eur J 4:2136–2141

    Article  Google Scholar 

  19. Vanderbilt D (1990) Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys Rev B 41:7892–7895

    Article  CAS  Google Scholar 

  20. Clark SJ, Segall MD, Pickard CJ, Hasnip PJ, Probert MI, Refson K, Payne MC (2005) First principles methods using castep. Z Kristallogr 220:567–570

    CAS  Google Scholar 

  21. Miao M, Zhang M-L, Van Doren V, Van Alsenoy C, Martins JL (2001) Density functional calculations on the structure of crystalline polyethylene under high pressures. J Chem Phys 115:11317–11324

    Article  CAS  Google Scholar 

  22. Ceperley DM, Alder B (1980) Ground state of the electron gas by a stochastic method. Phys Rev Lett 45:566–569

    Article  CAS  Google Scholar 

  23. Perdew JP, Zunger A (1981) Self-interaction correction to density-functional approximations for many-electron systems. Phys Rev B 23:5048–5079

    Article  CAS  Google Scholar 

  24. Perdew JP, Wang Y (1992) Accurate and simple analytic representation of the electron-gas correlation energy. Phys Rev B 45:13244–13249

    Article  CAS  Google Scholar 

  25. Fischer TH, Almlof J (1992) General methods for geometry and wave function optimization. J Phys Chem 96:9768–9774

    Article  CAS  Google Scholar 

  26. Keßenich E, Klapötke TM, Knizek J, Nöth H, Schulz A (1998) Characterization, crystal structure of 2,4-bis (triphenylphosphanimino) tetrazolo [5,1-a]-[1,3,5] triazine, and improved crystal structure of 2,4,6-triazido-1,3,5-triazine. Eur J Inorg Chem 1998:2013–2016

    Article  Google Scholar 

  27. Wolff S, Grimwood D, McKinnon J, Turner M, Jayatilaka D, Spackman M (2012) Crystalexplorer (version 3.0). University of Western Australia

  28. Spackman MA, McKinnon JJ (2002) Fingerprinting intermolecular interactions in molecular crystals. CrystEngComm 4:378–392

    Article  CAS  Google Scholar 

  29. Huynh MHV, Hiskey MA, Chavez DE, Naud DL, Gilardi RD (2005) Synthesis, characterization, and energetic properties of diazido heteroaromatic high-nitrogen C–N compound. J Am Chem Soc 127:12537–12543

    Article  CAS  Google Scholar 

  30. Hu A, Zhang F (2010) A nitrogen-rich C3N12 solid transformed from cyanuric triazide under high pressure and temperature. J Phys Condens Matter 22:505402. https://doi.org/10.1088/0953-8984/22/50/505402

    Article  CAS  Google Scholar 

  31. Miller DR, Holst JR, Gillan EG (2007) Nitrogen-rich carbon nitride network materials via the thermal decomposition of 2,5,8-triazido-s-heptazine. Inorg Chem 46:2767–2774

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support of this work by the National Natural Science Foundation of China (No. 21403110), the 111 project (G2017001) in China, State Key Laboratory of Explosion Science and Technology (ZDKT18-02 and KFJJ18-10 M) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Junqing Yang, Xuedong Gong or Jianguo Zhang.

Ethics declarations

Conflict and interest

There are no conflict of interest to declare.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 87 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, J., Wang, G., Gong, X. et al. High-pressure behavior and Hirshfeld surface analysis of nitrogen-rich materials: triazido-s-triazine (TAT) and triazido-s-heptazine (TAH). J Mater Sci 53, 15977–15985 (2018). https://doi.org/10.1007/s10853-018-2768-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-2768-4

Keywords

Navigation