Skip to main content

Advertisement

Log in

In-situ construction of 2D direct Z-scheme g-C3N4/g-C3N4 homojunction with high photocatalytic activity

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Constructing all-solid-state Z-scheme junction is a very effective strategy to design highly active photocatalysts for solar energy conversion and environmental purification. We herein firstly construct 2D g-C3N4/g-C3N4 Z-scheme homojunction by using a bottom-up approach, during which the supramolecular complex is initially formed, followed by a facile thermal polycondensation. Based on the active species trapping experiments, Mott–Schottky test and band edge position analysis, the prepared 2D nanosheet g-C3N4/g-C3N4 homojunctions are found to be Z-scheme type, different from those available reported ones with a type-II energy alignment. Benefiting from the specific 2D morphology with large exposed surface area and Z-scheme junction with efficient separation and high redox abilities of the photoinduced electrons and holes, the obtained 2D g-C3N4/g-C3N4 homojunctions are much more active than the conventional g-C3N4/g-C3N4 homojunction (CN-MT) and bulk g-C3N4 (CN-M) under visible light irradiation, validating by the high rhodamine degradation rate of 0.833 h1, which is about 3.9 and 15.4 times higher than that of CN-MT (0.214 h1) and CN-M (0.054 h1), respectively. The present work sheds light on design of novel Z-scheme photocatalysts with specific morphology and thus further application in the field of environment or energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. Ong W-J, Tan L-L, Ng YH et al (2016) Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: are we a step closer to achieving sustainability? Chem Rev 116:7159–7329

    Article  CAS  Google Scholar 

  2. Schultz DM, Yoon TP (2014) Solar synthesis: prospects in visible light photocatalysis. Science 343:1239176

    Article  Google Scholar 

  3. Xiao J-H, Huang W-Q, Y-s Hu et al (2018) Facile in situ synthesis of wurtzite ZnS/ZnO core/shell heterostructure with highly efficient visible-light photocatalytic activity and photostability. J Phys D Appl Phys 51:075501

    Article  Google Scholar 

  4. You M, Pan J, Chi C et al (2018) The visible light hydrogen production of the Z-scheme Ag3PO4/Ag/g-C3N4 nanosheets composites. J Mater Sci 53:1978–1986

    Article  CAS  Google Scholar 

  5. Feng L-L, Zou Y-C, Li C-G et al (2014) Nanoporous sulfur-doped graphitic carbon nitride microrods: a durable catalyst for visible-light-driven H2 evolution. Int J Hydrogen Energy 39:15373–15379

    Article  CAS  Google Scholar 

  6. Zou L-R, Huang G-F, Li D-F et al (2016) A facile and rapid route for synthesis of g-C3N4 nanosheets with high adsorption capacity and photocatalytic activity. RSC Adv 6:86688–86694

    Article  CAS  Google Scholar 

  7. Liu C, Huang H, Ye L et al (2017) Intermediate-mediated strategy to horn-like hollow mesoporous ultrathin g-C3N4 tube with spatial anisotropic charge separation for superior photocatalytic H-2 evolution. Nano Energy 41:738–748

    Article  CAS  Google Scholar 

  8. Tan S, Xing Z, Zhang J et al (2017) Meso-g-C3N4/g-C3N4 nanosheets laminated homojunctions as efficient visible-light-driven photocatalysts. Int J Hydrogen Energy 42:25969–25979

    Article  CAS  Google Scholar 

  9. Huang R-L, Huang W-Q, Li D-F et al (2018) Self-assembled hierarchical carbon/g-C3N4 composite with high photocatalytic activity. J Phys D Appl Phys 51:135501

    Article  Google Scholar 

  10. Lou Z, Xue C (2016) In situ growth of WO3−x nanowires on g-C3N4 nanosheets: 1D/2D heterostructures with enhanced photocatalytic activity. CrystEngComm 18:8406–8410

    Article  CAS  Google Scholar 

  11. Guo L, Yang Z, Marcus K et al (2018) MoS2/TiO2 heterostructures as nonmetal plasmonic photocatalysts for highly efficient hydrogen evolution. Energy Environ Sci 11:106–114

    Article  CAS  Google Scholar 

  12. Wang W, Fang J, Shao S, Lai M, Lu C (2017) Compact and uniform TiO2@g-C3N4 core-shell quantum heterojunction for photocatalytic degradation of tetracycline antibiotics. Appl Catal B 217:57–64

    Article  CAS  Google Scholar 

  13. Chen D, Wang K, Ren T, Ding H, Zhu Y (2014) Synthesis and characterization of the ZnO/mpg-C3N4 heterojunction photocatalyst with enhanced visible light photoactivity. Dalton Trans 43:13105–13114

    Article  CAS  Google Scholar 

  14. Li M, Zhang L, Wu M et al (2016) Mesostructured CeO2/g-C3N4 nanocomposites: Remarkably enhanced photocatalytic activity for CO2 reduction by mutual component activations. Nano Energy 19:145–155

    Article  CAS  Google Scholar 

  15. Huang K, Hong Y, Yan X et al (2016) Hydrothermal synthesis of g-C3N4/CdWO4 nanocomposite and enhanced photocatalytic activity for tetracycline degradation under visible light. CrystEngComm 18:6453–6463

    Article  CAS  Google Scholar 

  16. Qiao Q, Yang K, Ma L-L et al (2018) Facile in situ construction of mediator-free direct Z-scheme g-C3N4/CeO2 heterojunctions with highly efficient photocatalytic activity. J Phys D Appl Phys 51:275302

    Article  Google Scholar 

  17. Yuan Y, Huang G-F, Hu W-Y et al (2017) Construction of g-C3N4/CeO2/ZnO ternary photocatalysts with enhanced photocatalytic performance. J Phys Chem Solids 106:1–9

    Article  CAS  Google Scholar 

  18. Liang Q, Li Z, Bai Y, Huang Z-H, Kang F, Yang Q-H (2017) A composite polymeric carbon nitride with in situ formed isotype heterojunctions for highly improved photocatalysis under visible light. Small 13:1603182

    Article  Google Scholar 

  19. Hong J, Xia X, Wang Y, Xu R (2012) Mesoporous carbon nitride with in situ sulfur doping for enhanced photocatalytic hydrogen evolution from water under visible light. J Mater Chem 22:15006–15012

    Article  CAS  Google Scholar 

  20. Zhang J, Chen X, Takanabe K et al (2010) Synthesis of a carbon nitride structure for visible-light catalysis by copolymerization. Angew Chem Int Ed 49:441–444

    Article  CAS  Google Scholar 

  21. Dong F, Sun Y, Wu L, Fu M, Wu Z (2012) Facile transformation of low cost thiourea into nitrogen-rich graphitic carbon nitride nanocatalyst with high visible light photocatalytic performance. Catal Sci Technol 2:1332–1335

    Article  CAS  Google Scholar 

  22. Xu J, Wu H-T, Wang X et al (2013) A new and environmentally benign precursor for the synthesis of mesoporous g-C3N4 with tunable surface area. Phys Chem Chem Phys 15:4510–4517

    Article  CAS  Google Scholar 

  23. Lin Z, Wang X (2013) Nanostructure engineering and doping of conjugated carbon nitride semiconductors for hydrogen photosynthesis. Angew Chem Int Ed 52:1735–1738

    Article  CAS  Google Scholar 

  24. Zhang J, Zhang M, Sun R-Q, Wang X (2012) A facile band alignment of polymeric carbon nitride semiconductors to construct isotype heterojunctions. Angew Chem Int Edit 51:10145–10149

    Article  CAS  Google Scholar 

  25. Dong F, Zhao Z, Xiong T et al (2013) In situ construction of g-C3N4/g-C3N4 metal-free heterojunction for enhanced visible-light photocatalysis. ACS Appl Mater Int 5:11392–11401

    Article  CAS  Google Scholar 

  26. Dong F, Ni Z, Li P, Wu Z (2015) A general method for type I and type II g-C3N4/g-C3N4 metal-free isotype heterostructures with enhanced visible light photocatalysis. New J Chem 39:4737–4744

    Article  CAS  Google Scholar 

  27. Liu C, Dong X, Hao Y et al (2017) A novel supramolecular preorganization route for improving g-C3N4/g-C3N4 metal-free homojunction photocatalysis, New. J Chem 41:11872–11880

    CAS  Google Scholar 

  28. Wasio NA, Quardokus RC, Forrest RP et al (2014) Self-assembly of hydrogen-bonded two-dimensional quasicrystals. Nature 507:86–89

    Article  CAS  Google Scholar 

  29. Whitesides GM, Mathias JP, Seto CT (1991) Molecular self-assembly and nanochemistry: a chemical strategy for the synthesis of nanostructures. Science 254:1312–1319

    Article  CAS  Google Scholar 

  30. Shalom M, Inal S, Fettkenhauer C, Neher D, Antonietti M (2013) Improving carbon nitride photocatalysis by supramolecular preorganization of monomers. J Am Chem Soc 135:7118–7121

    Article  CAS  Google Scholar 

  31. Jun Y-S, Lee EZ, Wang X et al (2013) From melamine–cyanuric acid supramolecular aggregates to carbon nitride hollow spheres. Adv Funct Mater 23:3661–3667

    Article  CAS  Google Scholar 

  32. Jun Y-S, Park J, Lee SU et al (2013) Three-dimensional macroscopic assemblies of low-dimensional carbon nitrides for enhanced hydrogen evolution. Angew Chem Int Edit 52:11083–11087

    Article  CAS  Google Scholar 

  33. Xu J, Wang H, Zhang C et al (2017) From millimeter to subnanometer: vapor–solid deposition of carbon nitride hierarchical nanostructures directed by supramolecular assembly. Angew Chem Int 56:8426–8430

    Article  CAS  Google Scholar 

  34. Li L, Zhao Y, Antonietti M, Shalom M (2016) New organic semiconducting scaffolds by supramolecular preorganization: dye intercalation and dye oxidation and reduction. Small 12:6090–6097

    Article  CAS  Google Scholar 

  35. Yang XL, Qian FF, Zou GJ et al (2016) Facile fabrication of acidified g-C3N4/g-C3N4 hybrids with enhanced photocatalysis performance under visible light irradiation. Appl Catal B 193:22–35

    Article  CAS  Google Scholar 

  36. Wang D, Xu Z, Luo Q et al (2016) Preparation and visible-light photocatalytic performances of g-C3N4 surface hybridized with a small amount of CdS nanoparticles. J Mater Sci 51:893–902

    Article  CAS  Google Scholar 

  37. Ishida Y, Chabanne L, Antonietti M, Shalom M (2014) Morphology control and photocatalysis enhancement by the one-pot synthesis of carbon nitride from preorganized hydrogen-bonded supramolecular precursors. Langmuir 30:447–451

    Article  CAS  Google Scholar 

  38. Niu P, Zhang L, Liu G, Cheng H-M (2012) Graphene-like carbon nitride nanosheets for improved photocatalytic activities. Adv Funct Mater 22:4763–4770

    Article  CAS  Google Scholar 

  39. Yang X, Qian F, Zou G et al (2016) Facile fabrication of acidified g-C3N4/g-C3N4 hybrids with enhanced photocatalysis performance under visible light irradiation. Appl Catal B 193:22–35

    Article  CAS  Google Scholar 

  40. Lu X, Xu K, Chen P, Jia K, Liu S, Wu C (2014) Facile one step method realizing scalable production of g-C3N4 nanosheets and study of their photocatalytic H-2 evolution activity. J Mater Chem A 2:18924–18928

    Article  CAS  Google Scholar 

  41. Shi L, Li Z, Marcus K et al (2018) Integration of Au nanoparticles with a g-C3N4 based heterostructure: switching charge transfer from type-II to Z-scheme for enhanced visible light photocatalysis. Chem Commun 54:3747–3750

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the National Natural Science Foundation of China (Nos. 51772085, 21773099, 51471068 and U1530151), the Aid Program for Science and Technology Innovative Research Team in Higher Educational Institutions of Hunan Province.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei-Qing Huang or Gui-Fang Huang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiao, Q., Huang, WQ., Li, YY. et al. In-situ construction of 2D direct Z-scheme g-C3N4/g-C3N4 homojunction with high photocatalytic activity. J Mater Sci 53, 15882–15894 (2018). https://doi.org/10.1007/s10853-018-2762-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-2762-x

Keywords

Navigation