Skip to main content
Log in

The visible light hydrogen production of the Z-Scheme Ag3PO4/Ag/g-C3N4 nanosheets composites

  • Electronic materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The Z-Scheme Ag3PO4/Ag/g-C3N4 nanosheets composites are synthesised via simple annealing and anion-exchange precipitation method. The obtained samples are characterized by SEM, XRD, TEM, XPS, UV–Vis and PL, which imply that the Z-Scheme Ag3PO4/Ag/g-C3N4 structure has been prepared successfully. The photocatalytic activity of the as-prepared Ag3PO4/Ag/g-C3N4 nanosheets composites displays a remarkable enhancement after the Ag3PO4/Ag nanoparticles being introduced by the hydrogen production under visible light. Further, the Z-Scheme structure of the sample and the lamellar structure of the C3N4 are considered as the main reasons for the enhancement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Li SS, Ye L, Zhao WC, Zhang SQ, Mukherjee S, Ade H, Hou JH (2016) Energy-level modulation of small-molecule electron acceptors to achieve over 12% efficiency in polymer solar cells. Adv Mater 28:9423–9429

    Article  Google Scholar 

  2. Saxena A, Varun, El-Sebaii AA (2015) A thermodynamic review of solar air heaters. Renew Sustain Energy Rev 43:863–890

    Article  Google Scholar 

  3. Armaroli N, Balzani V (2007) The future of energy supply: challenges and opportunities. Angew Chem Int Edit 46:52–66

    Article  Google Scholar 

  4. Zhu K, Neale NR, Miedaner A, Frank AJ (2007) Enhanced charge-collection efficiencies and light scattering in dye-sensitized solar cells using oriented TiO2 nanotubes arrays. Nano Lett 7:69–74

    Article  Google Scholar 

  5. Yao HF, Chen Y, Qin YP, Yu RN, Cui Y, Yang B, Li SS, Zhang K, Hou JH (2016) Design and synthesis of a low bandgap small molecule acceptor for efficient polymer solar cells. Adv Mater 28:8283–8287

    Article  Google Scholar 

  6. You ZY, Su YX, Yu Y, Wang H, Qin T, Zhang F, Shen QH, Yang H (2017) Preparation of g-C3N4 nanorod/InVO4 hollow sphere composite with enhanced visible-light photocatalytic activities. Appl Catal B Environ 213:127–135

    Article  Google Scholar 

  7. Zhang FX, Yamakata A, Maeda K, Moriya Y, Takata T, Kubota J, Teshima K, Oishi S, Domen K (2012) Cobalt-modified porous single-crystalline LaTiO2N for highly efficient water oxidation under visible light. J Am Chem Soc 134:8348–8351

    Article  Google Scholar 

  8. Shen LJ, Luo MB, Liu YH, Liang RW, Jing FF, Wu L (2015) Noble-metal-free MoS2 co-catalyst decorated UiO-66/CdS hybrids for efficient photocatalytic H2 production. Appl Catal B Environ 166:445–453

    Article  Google Scholar 

  9. Zeng YP, Wang Y, Chen JW, Jiang YW, Kiani M, Li BQ, Wang RL (2016) Fabrication of high-activity hybrid NiTiO3/g-C3N4 heterostructured photocatalysts for water splitting to enhanced hydrogen production. Ceram Int 42:12297–12305

    Article  Google Scholar 

  10. Xu J, Zhang LW, Shi R, Zhu YF (2013) Chemical exfoliation of graphitic carbon nitride for efficient heterogeneous photocatalysis. J Mater Chem A 1:14766–14772

    Article  Google Scholar 

  11. Zheng Y, Jiao Y, Zhu YH, Li LH, Han Y, Chen Y, Du AJ, Jaroniec M, Qiao SZ (2014) Hydrogen evolution by a metal-free electrocatalyst. Nat Commun 5:3783

    Google Scholar 

  12. Ge L, Han CC, Liu J (2011) Novel visible light-induced g-C3N4/Bi2WO6 composite photocatalysts for efficient degradation of methyl orange. Appl Catal B Environ 108:100–107

    Article  Google Scholar 

  13. Zhang JY, Wang YH, Jin J, Zhang J, Lin Z, Huang F, Yu JG (2013) Efficient visible-light photocatalytic hydrogen evolution and enhanced photostability of core/shell CdS/g-C3N4 nanowires. ACS Appl Mater Interfaces 5:10317–10324

    Article  Google Scholar 

  14. Li YF, Jin RX, Fang X, Yang Y, Yang M, Liu XC, Xing Y, Song SY (2016) In situ loading of Ag2WO4 on ultrathin g-C3N4 nanosheets with highly enhanced photocatalytic performance. J Hazard Mater 313:219–228

    Article  Google Scholar 

  15. Li WB, Feng C, Dai SY, Yue JG, Hua FX, Hou H (2015) Fabrication of sulfur-doped g-C3N4/Au/CdS Z-scheme photocatalyst to improve the photocatalytic performance under visible light. Appl Catal B 168:465–471

    Article  Google Scholar 

  16. Xue JJ, Ma SS, Zhou YM, Zhang ZW, He M (2015) Facile photochemical synthesis of Au/Pt/g-C3N4 with plasmon-enhanced photocatalytic activity for antibiotic degradation. ACS Appl Mater Interfaces 7:9630–9637

    Article  Google Scholar 

  17. Hao RR, Wang GH, Tang H, Sun LL, Xu C, Han DY (2016) Template-free preparation of macro/mesoporous g-C3N4/TiO2 heterojunction photocatalysts with enhanced visible light photocatalytic activity. Appl Catal B Environ 187:47–58

    Article  Google Scholar 

  18. Karimi-Nazarabad M, Goharshadi EK (2017) Highly efficient photocatalytic and photoelectrocatalytic activity of solar light driven WO3/g-C3N4 nanocomposite. Solar Energy Mater Solar Cells 160:484–493

    Article  Google Scholar 

  19. Xu XX, Liu G, Randorn C, Irvine JTS (2011) g-C3N4 coated SrTiO3 as an efficient photocatalyst for H2 production in aqueous solution under visible light irradiation. Int J Hydrog Energy 36:13501–13507

    Article  Google Scholar 

  20. Ge L, Han CC, Liu J (2011) Novel visible light-induced g-C3N4/Bi2WO6 composite photocatalysts for efficient degradation of methyl orange. Appl Catal B Environ 108:100–107

    Article  Google Scholar 

  21. Cao SW, Liu XF, Yuan YP, Zhang ZY, Liao YS, Fang J, Loo SCJ, Sum TC, Xue C (2014) Solar-to-fuels conversion over In2O3/g-C3N4 hybrid photocatalysts. Appl Catal B Environ 147:940–946

    Article  Google Scholar 

  22. Ma JF, Liu Q, Zhu LF, Zou J, Wang K, Yang MR, Komarneni S (2016) Visible light photocatalytic activity enhancement of Ag3PO4 dispersed on exfoliated bentonite for degradation of rhodamine B. Appl Catal B Environ 182:26–32

    Article  Google Scholar 

  23. Zhu CS, Zhang L, Jiang B, Zheng JT, Hu P, Li SJ, Wu MB, Wu WT (2016) Fabrication of Z-scheme Ag3PO4/MoS2 composites with enhanced photocatalytic activity and stability for organic pollutant degradation. Appl Surf Sci 377:99–108

    Article  Google Scholar 

  24. Yang XF, Qin JL, Jiang Y, Chen KM, Yan XH, Zhang D, Li R, Tang H (2015) Fabrication of P25/Ag3PO4/graphene oxide heterostructures for enhanced solar photocatalytic degradation of organic pollutants and bacteria. Appl Catal B Environ 166:231–240

    Article  Google Scholar 

  25. Liu L, Qi YH, Lu JR, Lin SL, An WJ, Liang YH, Cui WQ (2016) A stable Ag3PO4@ g-C3N4 hybrid core@ shell composite with enhanced visible light photocatalytic degradation. Appl Catal B Environ 183:133–141

    Article  Google Scholar 

  26. He YM, Zhang LH, Teng BT, Fan MH (2014) New application of Z-scheme Ag3PO4/g-C3N4 composite in converting CO2 to fuel. Environ Sci Tech 49:649–656

    Article  Google Scholar 

  27. Xiang QJ, Lang D, Shen TT, Liu F (2015) Graphene-modified nanosized Ag3PO4 photocatalysts for enhanced visible-light photocatalytic activity and stability. Appl Catal B Environ 162:196–203

    Article  Google Scholar 

  28. Lu JS, Wang YJ, Liu F, Zhang L, Chai SN (2017) Fabrication of a direct Z-scheme type WO3/Ag3PO4 composite photocatalyst with enhanced visible-light photocatalytic performances. Appl Surf Sci 393:180–190

    Article  Google Scholar 

  29. Wan J, Du X, Liu EZ, Hu Y, Fan J, Hu XY (2017) Z-scheme visible-light-driven Ag3PO4 nanoparticle@MoS2 quantum dot/few-layered MoS2 nanosheet heterostructures with high efficiency and stability for photocatalytic selective oxidation. J Catal 345:281–294

    Article  Google Scholar 

  30. Wang ZL, Lv JL, Dai K, Lu LH, Liang CH, Geng L (2016) Large scale and facile synthesis of novel Z-scheme Bi2MoO6/Ag3PO4 composite for enhanced visible light photocatalyst. Mater Lett 169:250–253

    Article  Google Scholar 

  31. Yang ZM, Huang GF, Huang WQ, Wei JM, Yan XG, Liu YY, Jiao C, Wan Z, Pan AL (2014) Novel Ag3PO4/CeO2 composite with high efficiency and stability for photocatalytic applications. J Mater Chem A 2:1750–1756

    Article  Google Scholar 

  32. Tang CN, Liu EZ, Wan J, Hu XY, Fan J (2016) Co3O4 nanoparticles decorated Ag3PO4 tetrapods as an efficient visible-light-driven heterojunction photocatalyst. Appl Catal B Environ 181:707–715

    Article  Google Scholar 

  33. Liu K, Bai YC, Zhang L, Yang ZB, Fan QK, Zheng HQ, Yin YD, Gao CB (2016) Porous Au-Ag nanospheres with high-density and highly accessible hotspots for SERS analysis. Nano Lett 16:3675–3681

    Article  Google Scholar 

  34. Song QW, Peng MS, Wang L, He DC, Ouyange J (2016) A fluorescent aptasensor for amplified label-free detection of adenosine triphosphate based on core–shell Ag@ SiO2 nanoparticles. Biosens Bioelectron 77:237–241

    Article  Google Scholar 

  35. Tateishi I, Katsumata H, Suzuki T, Kaneco S (2017) Z-scheme photocatalytic activity of g-C3N4/tetrahedral Ag3PO4 hybrids under visible light. Mater Lett 201:66–69

    Article  Google Scholar 

  36. Pan JQ, Cao J, Mei J, Zhang XF, Wang S, Zheng YY, Cui C, Li CR (2016) The preparation of Ag@AgCl modified K2Ta2O6 and its natural light photocatalysis. Mater Lett 184:52–56

    Article  Google Scholar 

  37. Yang XF, Chen ZP, Xu JS, Tang H, Chen KM, Jiang Y (2015) Tuning the morphology of g-C3N4 for improvement of Z-Scheme photocatalytic water oxidation. ACS Appl Mater Interfaces 7:15285–15293

    Article  Google Scholar 

  38. Liu J, Liu Y, Liu NY, Han YZ, Zhang X, Huang H, Lifshitz Y, Lee ST, Zhong J, Kang ZH (2015) Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway. Science 347:970–974

    Article  Google Scholar 

  39. Wang FR, Wang JD, Sun HP, Liu JK, Yang XH (2017) Plasmon-enhanced instantaneous photocatalytic activity of Au@Ag3PO4 heterostructure targeted at emergency treatment of environmental pollution. J Mater Sci 52:2495–2510. doi:10.1007/s10853-016-0544-x

    Article  Google Scholar 

  40. Krungchanuchat S, Ekthammathat N, Phuruangrat A, Thongtem S, Thongtem T (2017) High UV–visible photocatalytic activity of Ag3PO4 dodecahedral particles synthesized by a simple hydrothermal method. Mater Lett 201:58–61

    Article  Google Scholar 

  41. Lan W, Chen YX, Yang ZW, Han WH, Zhou JY, Zhang Y, Wang JY, Tang GM, Wei YP, Dou W, Su Q, Xie EQ (2017) Ultraflexible transparent film heater made of ag nanowire/PVA composite for rapid-response thermotherapy pads. ACS Appl Mater Interfaces 217:591–602

    Google Scholar 

  42. Li XX, Wan T, Qiu JY, Wei H, Qin FH, Wang YH, Liao YJ, Huang ZY, Tan XC (2017) In-situ photocalorimetry-fluorescence spectroscopy studies of RhB photocatalysis over Z-scheme g-C3N4@Ag@Ag3PO4 nanocomposites: A pseudo-zero-order rather than a first-order process. Appl Catal B Environ 9:6644–6651

    Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Nos. 51672249, 51603187 and 91122022), Zhejiang Provincial Natural Science Foundation of China (Nos. LQ17F040004 and LY15E030011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chaorong Li.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 190 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

You, M., Pan, J., Chi, C. et al. The visible light hydrogen production of the Z-Scheme Ag3PO4/Ag/g-C3N4 nanosheets composites. J Mater Sci 53, 1978–1986 (2018). https://doi.org/10.1007/s10853-017-1612-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1612-6

Keywords

Navigation