Skip to main content

Advertisement

Log in

Facile synthesis of mesoporous ZnCo2O4 nanosheet arrays grown on rGO as binder-free electrode for high-performance asymmetric supercapacitor

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Asymmetric supercapacitor (ASC) with high energy density has been developed successfully using rGO/ZnCo2O4 composite as positive electrode and activated porous carbon (AC) derived from lotus leaves as negative electrode in KOH solution. Mesoporous ZnCo2O4 nanosheet arrays grown on rGO were prepared via a simple hydrothermal method followed by calcination. RGO/ZnCo2O4 composite exhibited excellent electrochemical performance, which can achieve a specific capacity of 680 F g−1 at current density of 1 A g−1. Due to the high capacitance of porous rGO/ZnCo2O4 nanosheet structure and synergistic effect between the positive and negative electrodes, the RGO/ZnCo2O4//AC ASC showed excellent performance with high specific capacitance of 110 F g−1 at 0.5 A g−1 and good cycling stability with only 2.7% loss of available specific capacitance after 3000 cycles. More importantly, the maximum energy density of this ASC can achieve 31.25 W h kg−1 at a power density of 375 W kg−1. In addition, this ASC can store charge efficiently and two ASCs in series can light up a LED, which can last for over 15 min. These encouraging results show its great potential in the application of energy storage devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Zhang GQ, Lou XW (2013) General solution growth of mesoporous NiCo2O4 nanosheets on various conductive substrates as high-performance electrodes for supercapacitors. Adv Mater 25:976–979

    Article  CAS  Google Scholar 

  2. Tarascon JM, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414:359–367

    Article  CAS  Google Scholar 

  3. Simon P, Gogotsi Y (2008) Materials for electrochemical capacitors. Nat Mater 7:845–854

    Article  CAS  Google Scholar 

  4. Liu MY, Yang T, Chen JH, Su L, Chou KC, Hou XM (2017) TiN @NiCo2O4 coaxial nanowires as supercapacitor electrode materials with improved electrochemical and wide-temperature performance. J Alloys Compd 692:605–613

    Article  CAS  Google Scholar 

  5. Dong LB, Xu CJ, Li Y, Huang ZH, Kang FY, Yang QH, Zhao X (2016) Flexible electrodes and supercapacitors for wearable energy storage: a review by category. J Mater Chem A 4:4659–4685

    Article  CAS  Google Scholar 

  6. Gao GX, Wu HB, Ding SJ, Liu LM, Lou XW (2015) Hierarchical NiCo2O4 nanosheets grown on Ni nanofoam as high-performance electrodes for supercapacitors. Small 11:804–808

    Article  CAS  Google Scholar 

  7. Li DD, Li Y, Xu ZY, Wang DW, Wang TP, Zhao J, Zhang HH (2018) Core/shell Ni-P@Ni-Co composite with micro-/nanostructure for supercapacitor. J Mater Sci 53:3647–3660. https://doi.org/10.1007/s10853-017-1776-0

    Article  CAS  Google Scholar 

  8. Jiang LY, Sui YW, Qi JQ, Chang Y, He YZ, Meng QK, Wei FX, Sun Z, Jin YX (2017) Structure dependence of Fe–Co hydroxides on Fe/Co ratio and their application for supercapacitors. Part Part Syst Char 34:1600239

    Article  Google Scholar 

  9. Wang R, Sui YW, Huang SF, Pu YG, Cao P (2018) High-performance flexible all-solid-state asymmetric supercapacitors from nanostructured electrodes prepared by oxidation-assisted dealloying protocol. Chem Eng J 331:527–535

    Article  CAS  Google Scholar 

  10. Xin GX, Wang YH, Zhang JH, Jia SP, Zang JB, Wang YF (2015) A self-supporting graphene/MnO2 composite for high-performance supercapacitors. Int J Hydrogen Energy 40:10176–10184

    Article  CAS  Google Scholar 

  11. Chang Y, Sui YW, Qi JQ, Jiang LY, He YZ, Wei FX, Meng QK, Jin YX (2017) Facile synthesis of Ni3S2 and Co9S8 double-size nanoparticles decorated on rGO for high-performance supercapacitor electrode materials. Electrochim Acta 226:69–78

    Article  CAS  Google Scholar 

  12. Qi JQ, Chang Y, Sui YW, He YZ, Meng QK, Wei FX, Ren YJ, Jin YX (2018) Facile synthesis of Ag-decorated Ni3S2 nanosheets with 3D bush structure grown on rGO and its application as positive electrode material in asymmetric supercapacitor. Adv Mater Interfaces 5:1700985

    Article  Google Scholar 

  13. Qi XH, Zheng WJ, He GH, Tian TF, Du NX, Wang L (2017) NiCo2O4 hollow microspheres with tunable numbers and thickness of shell for supercapacitors. Chem Eng J 309:426–434

    Article  CAS  Google Scholar 

  14. Liu X, Wei FX, Sui YW, Qi JQ, He YZ, Meng QK (2018) Polyhedral ternary oxide FeCo2O4: a new electrode material for supercapacitors. J Alloys Compd 735:1339–1343

    Article  CAS  Google Scholar 

  15. Wang JX, Xiong Y, Zhang XH (2017) Rational synthesis of NiCo2O4 meso-structures for high-rate supercapacitors. J Mater Sci 52:3678–3686. https://doi.org/10.1007/s10853-016-0658-1

    Article  CAS  Google Scholar 

  16. Du N, Xu YF, Zhang H, Yu JX, Zhai CX, Yang DR (2011) Porous ZnCo2O4 nanowires synthesis via sacrificial templates: high-performance anode materials of Li-Ion batteries. Inorg Chem 50:3320–3324

    Article  CAS  Google Scholar 

  17. Liu ZQ, Cheng H, Li N, Ma TY, Su YZ (2016) ZnCo2O4 quantum dots anchored on nitrogen-doped carbon nanotubes as reversible oxygen reduction/evolution electrocatalysts. Adv Mater 28:3777–3784

    Article  CAS  Google Scholar 

  18. Venkatachalam V, Alsalme A, Alswieleh A, Jayavel R (2017) Double hydroxide mediated synthesis of nanostructured ZnCo2O4 as high performance electrode material for supercapacitor applications. Chem Eng J 321:474–483

    Article  CAS  Google Scholar 

  19. Sahoo S, Shim JJ (2017) Facile synthesis of three-dimensional ternary ZnCo2O4/reduced graphene oxide/NiO composite film on nickel foam for next generation supercapacitor electrodes. ACS Sustain Chem Eng 5:241–251

    Article  CAS  Google Scholar 

  20. Moon IK, Yoon S, Oh J (2017) Three-dimensional hierarchically mesoporous ZnCo2O4 nanowires grown on graphene/sponge foam for high-performance. Flex All Solid State Supercapacitors Chem Eur J 23:597–604

    CAS  Google Scholar 

  21. Liu B, Liu BY, Wang QF, Wang XF, Xiang QY, Chen D, Shen GZ (2013) New energy storage option: toward ZnCo2O4 nanorods/nickel foam architectures for high-performance supercapacitors. ACS Appl Mater Interfaces 5:10011–10017

    Article  CAS  Google Scholar 

  22. Wang QH, Zhu LX, Sun LQ, Liu YC, Jiao LF (2015) Facile synthesis of hierarchical porous ZnCo2O4 microspheres for high-performance supercapacitors. J Mater Chem A 3:982–985

    Article  CAS  Google Scholar 

  23. Zhou G, Zhu J, Chen YJ, Mei L, Duan XC, Zhang GH, Chen LB, Wang TH, Lu BA (2014) Simple method for the preparation of highly porous ZnCo2O4 nanotubes with enhanced electrochemical property for supercapacitor. Electrochim Acta 123:450–455

    Article  CAS  Google Scholar 

  24. Jiang L, Sui Y, Qi J, Chang Y, He Y, Meng Q, Wei F, Sun Z, Jin Y (2017) Hierarchical Ni-Co layered double hydroxide nanosheets on functionalized 3D-RGO films for high energy density asymmetric supercapacitor. Appl Surf Sci 426:148–159

    Article  CAS  Google Scholar 

  25. Min SD, Zhao CJ, Chen GR, Qian XZ (2014) One-pot hydrothermal synthesis of reduced graphene oxide/Ni(OH)2 films on nickel foam for high performance supercapacitors. Electrochim Acta 115:155–164

    Article  CAS  Google Scholar 

  26. Zhou J, Huang Y, Cao XH, Ouyang B, Sun WP, Tan CL, Zhang Y, Ma QL, Liang SQ, Yan QY, Zhang H (2015) Two-dimensional NiCo2O4 nanosheet-coated three-dimensional graphene networks for high-rate, long-cycle-life supercapacitors. Nanoscale 7:7035–7039

    Article  CAS  Google Scholar 

  27. Lu XF, Wu DJ, Li RZ, Li Q, Ye SH, Tong YX, Li GR (2014) Hierarchical NiCo2O4 nanosheets@hollow microrod arrays for high-performance asymmetric supercapacitors. J Mater Chem A 2:4706–4713

    Article  CAS  Google Scholar 

  28. Kong DZ, Cheng CW, Wang Y, Wong JI, Yang YP, Yang HY (2015) Three-dimensional Co3O4@C@Ni3S2 sandwich-structured nanoneedle arrays: towards high-performance flexible all-solid-state asymmetric supercapacitors. J Mater Chem A 3:16150–16161

    Article  CAS  Google Scholar 

  29. Liu SN, Wu J, Zhou J, Fang GZ, Liang SQ (2015) Mesoporous NiCo2O4 nanoneedles grown on three dimensional graphene networks as binder-free electrode for high-performance lithium-ion batteries and supercapacitors. Electrochim Acta 176:1–9

    Article  CAS  Google Scholar 

  30. Nguyen VH, Shim JJ (2015) Three-dimensional nickel foam/graphene/NiCo2O4 as high-performance electrodes for supercapacitors. J Power Sources 273:110–117

    Article  CAS  Google Scholar 

  31. Zou RJ, Xu KB, Wang T, He GJ, Liu Q, Liu XJ, Zhang ZY, Hu JQ (2013) Chain-like NiCo2O4 nanowires with different exposed reactive planes for high-performance supercapacitors. J Mater Chem A 1:8560–8566

    Article  CAS  Google Scholar 

  32. Wu J, Mi R, Li S, Guo P, Mei J, Liu H, Lau WM, Liu LM (2015) Hierarchical three-dimensional NiCo2O4 nanoneedle arrays supported on Ni foam for high-performance supercapacitors. RSC Adv 5:25304–25311

    Article  CAS  Google Scholar 

  33. Yang Q, Lu ZY, Sun XM, Liu JF (2013) Ultrathin Co3O4 nanosheet arrays with high supercapacitive performance. Sci Rep UK 3:1675–1683

    Article  Google Scholar 

  34. Zhu T, Koo ER, Ho GW (2015) Shaped-controlled synthesis of porous NiCo2O4 with 1–3 dimensional hierarchical nanostructures for high-performance supercapacitors. RSC Adv 5:1697–1704

    Article  CAS  Google Scholar 

  35. Qu G, Jia SF, Wang H, Cao F, Li L, Qing C, Sun DM, Wang BX, Tang YW, Wang JB (2016) Asymmetric supercapacitor based on porous N-doped carbon derived from pomelo peel and NiO arrays. ACS Appl Mater Interfaces 8:20822–20830

    Article  CAS  Google Scholar 

  36. Wu C, Yang SR, Cai JJ, Zhang QB, Zhu Y, Zhang KL (2016) Activated microporous carbon derived from almond shells for high energy density asymmetric supercapacitors. ACS Appl Mater Interfaces 8:15288–15296

    Article  CAS  Google Scholar 

  37. Gai YS, Shang YY, Gong LY, Su LH, Hao L, Dong FY, Li JZ (2017) A self-template synthesis of porous ZnCo2O4 microspheres for high-performance quasi-solid-state asymmetric supercapacitors. RSC Adv 7:1038–1044

    Article  CAS  Google Scholar 

  38. Fu WB, Wang YL, Han WH, Zhang ZM, Zha HM, Xie EQ (2016) Construction of hierarchical ZnCo2O4@NixCo2x(OH)6x core/shell nanowire arrays for high-performance supercapacitors. J Mater Chem A 4:173–182

    Article  CAS  Google Scholar 

  39. Tang CH, Tang Z, Gong H (2012) Hierarchically porous Ni–Co oxide for high reversibility asymmetric full-cell supercapacitors. J Electrochem Soc 159:A651–A656

    Article  CAS  Google Scholar 

  40. Vadiyar MM, Kolekar SS, Deshpande NG, Chang JY, Kashale AA, Ghule AV (2017) Binder-free chemical synthesis of ZnFe2O4 thin films for asymmetric supercapacitor with improved performance. Ionics 23:741–749

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Fundamental Research Funds for the Central Universities (No. 2017QNA04).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yanwei Sui or Xuping Zhang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 3810 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qi, J., Mao, J., Zhang, A. et al. Facile synthesis of mesoporous ZnCo2O4 nanosheet arrays grown on rGO as binder-free electrode for high-performance asymmetric supercapacitor. J Mater Sci 53, 16074–16085 (2018). https://doi.org/10.1007/s10853-018-2757-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-2757-7

Keywords

Navigation