Skip to main content

Advertisement

Log in

Core/shell Ni–P@Ni–Co composite with micro-/nanostructure for supercapacitor

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this paper, the core/shell Ni–P@Ni–Co composite with micro-/nanostructure, coating Ni–Co on the precursor Ni–P microspheres, has been synthesized successfully via facile two-step hydrothermal method. The chemical composition and microstructure of as-prepared samples were characterized by XRD, EDS, BET, XPS, SEM, and TEM. The results show that the core/shell composite Ni–P@Ni–Co, with a more rough surface and larger specific surface area (74.2 m2 g−1) than bare Ni–P, exhibits good charge storage performance (the specific capacitance reaches up to 1221.1 F g−1 at the current density of 1 A g−1, 1.8 times of Ni–P under the same conditions), and good cycling performance (the retention of specific capacitance is 95.8% after 5000 cycles at 2 A g−1 current density). To further evaluate the practical application property of Ni–P@Ni–Co, an asymmetric supercapacitor (Ni–P@Ni–Co//AC) was assembled, with the Ni–P@Ni–Co and activated carbon (AC) as the positive and negative electrodes, respectively. The electrochemical results reveal that Ni–P@Ni–Co//AC delivers a high energy density of 28.9 Wh kg−1 at a power density of 0.4 kW kg−1, along with a specific capacitance retention rate of 89.1% and nearly 100% Coulomb efficiency at a current density of 1 A g−1 after 5000 cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Faraji S, Ani FN (2015) The development supercapacitor from activated carbon by electroless plating—a review. Renew Sustain Energy Rev 42:823–834

    Article  Google Scholar 

  2. Zhang H, Ma C, Tong J, Hu Y-F, Zhao J, Hu B, Wang C-Y (2016) Effect of potassium sulfate in mineral precursor on capacitance behavior of as-prepared activated carbon. Fuel Process Technol 142:235–241

    Article  Google Scholar 

  3. Li Z, Han J, Fan L, Wang M, Tao S, Guo R (2015) The anion exchange strategy towards mesoporous α-Ni(OH)2 nanowires with multinanocavities for high-performance supercapacitors. Chem Commun 51:3053–3056

    Article  Google Scholar 

  4. Vangari M, Pryor T, Jiang L (2013) Supercapacitors: review of materials and fabrication methods. J Energy Eng 139(2):72–79

    Article  Google Scholar 

  5. Zhang LL, Zhao XS (2009) Carbon-based materials as supercapacitor. Chem Soc Rev 38:2520–2531

    Article  Google Scholar 

  6. Singh AK, Sarkar D, Khan GG, Mandal K (2014) Hydrogenated NiO nanoblock architecture for high performance pseudocapacitor. Appl Mater Interfaces 6:4684–4692

    Article  Google Scholar 

  7. Li Z, Han J, Fan L, Guo R (2016) In-situ controllable growth of α-Ni(OH)2 with different morphologies on reduced graphene oxide sheets and capacitive performance for supercapacitors. Colloid Polym Sci 294:681–689

    Article  Google Scholar 

  8. Shakir I, Ali Z, Bae J, Park J, Kang DJ (2014) Layer by layer assembly ultrathin V2O5 anchored MWCNTs and graphene on textitle fabrics for fabrication of high energy density flexible supercapacitor electrodes. Nanoscale 6:4125–4130

    Article  Google Scholar 

  9. Wang G, Zhang L, Zhang J (2012) Areview of electrode materials for electrochemical supercapacitors. Chem Soc Rev 41:797–828

    Article  Google Scholar 

  10. Wang D, Kong L-B, Liu M-C, Zhang W-B, Luo Y-C, Kang L (2015) Amorphous Ni–P materials for high performance pseudocapacitors. J Power Sour 274:1107–1113

    Article  Google Scholar 

  11. Panneerselvam A, Malik MA, Afzaal M, O’Brien P, Halliwell M (2008) The chemical vapor deposition of nickel phosphide or selenide thin films from a single precursor. J Am Chem Soc 130:2420–2421

    Article  Google Scholar 

  12. Liu M-C, Hu Y-M, An W-Y, Hu Y-X, Niu L-Y, Kong L-B, Kang L (2017) Construction of high electrical conductive nickel phosphide alloys with controllable crystalline phase for advanced energy storage. Electrochim Acta 232:387–395

    Article  Google Scholar 

  13. Wang D, Kong L-B, Liu M-C, Luo Y-C, Kang L (2015) An approach to preparing Ni-P with different phases for use as supercapacitor electrode materials. Chem Eur J 21:17897–17903

    Article  Google Scholar 

  14. Xia XH, Tu JP, Zhang YQ, Mai YJ, Wang XL, Gu CD, Zhao XB (2011) Three-dimentional porous nano-Ni/Co(OH)2 nanoflake composite film: a pseudocapacitive material with superior performance. J Phys Chem C 115:22662–22668

    Article  Google Scholar 

  15. Xie S, Gou J (2017) Facile synthesis of Ni2P/Ni12P5 composite as long-life electrode material for hybrid supercapacitor. J Alloy Compd 713:10–17

    Article  Google Scholar 

  16. Jiang P, Liu Q, Sun X (2014) NiP2 nanosheet arrays supported on carbon cloth: an efficient 3D hydrogen evolution cathode in both acidic and alkaline solutions. Nanoscale 6:13440–13445

    Article  Google Scholar 

  17. Liu J, Jiang J, Cheng C, Li H, Zhang J, Gong H, Fan H (2011) Co3O4 nanowire@MnO2 ultrathin nanosheet core/shell arrays: a new class of high-performance pseudocapacitive materials. Adv Mater 23:2076–2081

    Article  Google Scholar 

  18. Ding R, Li X, Shi W, Xu Q, Liu E (2017) One-pot solvothermal synthesis of ternary Ni–Co–P micro/nano-structured materials for high performance aqueous asymmetric supercapacitors. Chem Eng J 320:376–388

    Article  Google Scholar 

  19. An C, Wang Y, Wang Y, Liu G, Li L, Qiu F, Xu Y, Jiao L, Yuan H (2013) Facile synthesis and superior supercapacitor performances of Ni2P/rGO nanoparticles. RSC Adv 3:4628–4633

    Article  Google Scholar 

  20. Lu Y, Liu J-K, Liu X, Huang S, Wang T, Wang X, Gu C, Tu J, Mao SX (2013) Facile synthesis of Ni-coated Ni2P for supercapacitor applications. CrystEngComm 15:7071–7079

    Article  Google Scholar 

  21. Li X, Ding R, Shi W, Xu Q, Wang L, Jiang H, Yang Z, Liu E (2017) Hierarchical mesoporous Ni–P@MnO2 composite for high performance supercapacitors. Mater Lett 187:144–147

    Article  Google Scholar 

  22. Shao Y, Zhao Y, Li H, Xu C (2016) Three-dimensional hierarchical NixCo1−xO/NiyCo2−yP@C hybrids on nickel foam for excellent supercapacitors. Appl Mater Interfaces 8:35368–35376

    Article  Google Scholar 

  23. Ding R, Qi L, Jia M, Wang H (2013) Facile and large-scale chemical synthesis of highly porous secondary submicron/micron-sized NiCo2O4 materials for high-performance aqueous hybrid AC-NiCo2O4 electrochemical capacitors. Electrochim Acta 107:494–502

    Article  Google Scholar 

  24. Yan Y, Xu H, Guo W, Huang Q, Zheng M, Pang H, Xue H (2016) Facile synthesis of amorphous aluminum vanadate hierarchical microspheres for supercapacitors. Inorg Chem Front 3:791–797

    Article  Google Scholar 

  25. Liang H, Xia C, Jiang Q, Gandi AN, Schwingenschlögl U, Alshareef HN (2017) Low temperature synthesis of ternary metal phosphides using plasma for asymmetric supercapacitors. Nano Energy 35:331–340

    Article  Google Scholar 

  26. Xie L, Hu Z, Lv C, Sun G, Wang J, Li Y, He H, Wang J, Li L (2012) CoxNi1−x double hydroxide nanoparticles with ultrahigh specific capacitances as supercapacitor electrode materials. Electrochim Acta 78:205–211

    Article  Google Scholar 

  27. Wang S, Huang Z, Li R, Zheng X, Lu F, He T (2016) Template-assisted synthesis of NiP@CoAl-LDH nanotube arrays with superior electrochemical performance for supercapacitors. Electrochim Acta 204:160–168

    Article  Google Scholar 

  28. Shi F, Xie D, Zhong Y, Wang DH, Xia XH, Gu CD, Wang XL, Tu JP (2016) Facile synthesis of self-supported Ni2P nanosheet@Ni sponge composite for high-rate battery. J Power Sour 328:405–412

    Article  Google Scholar 

  29. Jiang P, Liu Q, Ge C, Cui W, Pu Z, Asiri AM, Sun X (2014) CoP nanostructures with different morphologies: synthesis, characterization and a study of their electrocatalytic performance toward the hydrogen evolution reaction. J Mater Chem A 2:14634–14640

    Article  Google Scholar 

  30. Wang A-L, Lin J, Xu H, Tong Y-X, Li G-R (2016) Ni2P–CoP hybrid nanosheet arrays supported on carbon cloth as an efficient flexible cathode for hydrogen evolution. J Mater Chem A 4:16992–16999

    Article  Google Scholar 

  31. Yu J, Li Q, Chen N, Xu C-Y, Zhen L, Xu J, Dravid VP (2016) Carbon-coated nickel phosphide nanosheets as efficient dual-electrocatalyst for overall water splitting. Appl Mater Interfaces 8:27850–27858

    Article  Google Scholar 

  32. Duan S, Wang R (2014) Au/Ni12P5 core/shell nanocrystals from bimetallic heterostructures: in situ synthesis, evolution and supercapacitor properties. NPG Asia Mater 6:1–7

    Article  Google Scholar 

  33. Li X, Shen J, Li N, Ye M (2015) Template-free solvothermal synthesis of NiS2 microspheres on graphene sheets for high-performance supercapacitros. Mater Lett 139:81–85

    Article  Google Scholar 

  34. Du W, Wei S, Zhou K, Guo J, Pang H, Qian X (2015) One-step synthesis and graphene-modification to achieve nickel phosphide nanoparticles with electrochemical properties suitable for supercapacitors. Mater Res Bull 61:333–339

    Article  Google Scholar 

  35. Li H, Chen Z, Wang Y, Zhang J, Yan X (2016) Controlled synthesis and enhanced electrochemical performance of self-assembled rosette-type Ni–Al layered double hydroxide. Electrochim Acta 210:15–22

    Article  Google Scholar 

  36. Gou J, Xie S, Liu Y, Liu C (2016) Flower-like nickel-cobalt hydroxides converted from phosphites for high rate performance hybrid supercapacitor electrode materials. Electrochim Acta 210:915–924

    Article  Google Scholar 

  37. Li X, Ding R, Yi L, Shi W, Xu Q, Liu E (2016) Mesoporous Ni-P@NiCo2O4 composite materials for high performance aqueous asymmetric supercapacitors. Electrochim Acta 222:1169–1175

    Article  Google Scholar 

  38. Wang X, Sumboja A, Lin M, Yan J, Lee PS (2012) Enhancing electrochemical reaction sites in nickel––cobalt layered double hydroxides on zinc tin oxide nanowires: a hybrid material for an asymmetric supercapacitor device. Nanoscale 4:7266–7272

    Article  Google Scholar 

  39. Yu X, Lu B, Xu Z (2014) Super long-life supercapacitors based on the construction of nanohoneycomb-like strongly coupled CoMoO4-3D graphene hybrid electrodes. Adv Mater 26:1044–1051

    Article  Google Scholar 

  40. Tang C, Tang Z, Gong H (2012) Hierarchically porous Ni–Co oxide for high reversibility asymmetric full-cell supercapacitors. J Electrochem Soc 159(5):A651–A656

    Article  Google Scholar 

  41. Du W, Kang R, Geng P, Xiong X, Li D, Tian Q, Pang H (2015) New asymmetric and symmetric supercapacitor cells based on nickel phosphide nanoparticles. Mater Chem Phys 165:207–214

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), the Natural Science Foundation of China (No. 21375116) and Postdoctoral Science Foundation of China (2014M551668). The related measure and analysis instrument for this work was supported by the Testing Center of Yangzhou University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huaihao Zhang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1300 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, D., Li, Y., Xu, Z. et al. Core/shell Ni–P@Ni–Co composite with micro-/nanostructure for supercapacitor. J Mater Sci 53, 3647–3660 (2018). https://doi.org/10.1007/s10853-017-1776-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1776-0

Keywords

Navigation