Skip to main content
Log in

Fast-dissolving carvacrol/cyclodextrin inclusion complex electrospun fibers with enhanced thermal stability, water solubility, and antioxidant activity

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Carvacrol is a known antioxidant molecule and commonly used in food and cosmetics as a flavor and fragrance agent; however, carvacrol has major issues such as high volatility, low water solubility, and stability. In this study, carvacrol/cyclodextrin inclusion complex fibers (carvacrol/CD-IC fibers) were produced via electrospinning in order to enhance thermal stability, water solubility and shelf-life of carvacrol having antioxidant activity. The phase solubility and computational modeling studies showed that carvacrol can form inclusion complexes with two types of modified CDs, hydroxypropyl-β-cyclodextrin (HPβCD) and hydroxypropyl-γ-cyclodextrin (HPγCD). The carvacrol/cyclodextrin inclusion complex electrospun fibers (carvacrol/HPβCD-IC fibers and carvacrol/HPγCD-IC fibers) were obtained as free-standing fibrous webs. Although pure carvacrol is highly volatile, the electrospun carvacrol/CD-IC fibers were quite effective to preserve high amount of carvacrol due to the inclusion complexation. In addition, carvacrol/CD-IC fibers have shown higher temperature stability for carvacrol. Moreover, carvacrol/CD-IC fibers showed more effective antioxidant activity as compared to pure carvacrol. The carvacrol/CD-IC fibrous webs have shown fast-dissolving character in water due to the enhanced water solubility of carvacrol/CD-IC and their ultrafine fiber structure. In short, encapsulation of carvacrol in electrospun CD-IC fibrous webs has shown potentials for food and oral care applications due to free-standing and fast-dissolving character along with high water solubility, high temperature stability and enhanced antioxidant by carvacrol/cyclodextrin inclusion complexation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Del Valle EM (2004) Cyclodextrins and their uses: a review. Process Biochem 39(9):1033–1046

    Article  Google Scholar 

  2. Hedges AR (1998) Industrial applications of cyclodextrins. Chem Rev 98(5):2035–2044

    Article  CAS  Google Scholar 

  3. Szejtli J (1998) Introduction and general overview of cyclodextrin chemistry. Chem Rev 98(5):1743–1754

    Article  CAS  Google Scholar 

  4. Wendorff JH, Agarwal S, Greiner A (2012) Electrospinning: materials, processing, and applications. Wiley, Weinheim

    Book  Google Scholar 

  5. Aytac Z, Keskin NOS, Tekinay T, Uyar T (2017) Antioxidant α-tocopherol/γ-cyclodextrin–inclusion complex encapsulated poly (lactic acid) electrospun nanofibrous web for food packaging. J Appl Polym Sci 134:44858

    Article  Google Scholar 

  6. Sahay R, Kumar PS, Sridhar R, Sundaramurthy J, Venugopal J, Mhaisalkar SG, Ramakrishna S (2012) Electrospun composite nanofibers and their multifaceted applications. J Mater Chem 22(26):12953–12971

    Article  CAS  Google Scholar 

  7. Uyar T, Kny E (eds) (2017) Electrospun materials for tissue engineering and biomedical applications. Woodhead Publishing, Cambridge

    Google Scholar 

  8. Ramakrishna S, Fujihara K, Teo WE, Lim TC, Ma Z (2005) An introduction to electrospinning and nanofibers. World Scientific, Singapore

    Book  Google Scholar 

  9. Shenoy SL, Bates WD, Frisch HL, Wnek GE (2005) Role of chain entanglements on fiber formation during electrospinning of polymer solutions: good solvent, non-specific polymer–polymer interaction limit. Polymer 46(10):3372–3384

    Article  CAS  Google Scholar 

  10. Theron SA, Zussman E, Yarin AL (2004) Experimental investigation of the governing parameters in the electrospinning of polymer solutions. Polymer 45(6):2017–2030

    Article  CAS  Google Scholar 

  11. Celebioglu A, Uyar T (2012) Electrospinning of nanofibers from non-polymeric systems: polymer-free nanofibers from cyclodextrin derivatives. Nanoscale 4(2):621–631

    Article  CAS  Google Scholar 

  12. Celebioglu A, Uyar T (2013) Electrospinning of nanofibers from non-polymeric systems: electrospun nanofibers from native cyclodextrins. J Colloid Interface Sci 404:1–7

    Article  CAS  Google Scholar 

  13. Aytac Z, Yildiz ZI, Kayaci-Senirmak F, San-Keskin NO, Kusku SI, Durgun E, Tekinay T, Uyar T (2016) Fast-dissolving, prolonged release, and antibacterial cyclodextrin/limonene-inclusion complex nanofibrous webs via polymer-free electrospinning. J Agric Food Chem 64(39):7325–7334

    Article  CAS  Google Scholar 

  14. Aytac Z, Yildiz ZI, Kayaci-Senirmak F, San-Keskin NO, Tekinay T, Uyar T (2016) Electrospinning of polymer-free cyclodextrin/geraniol–inclusion complex nanofibers: enhanced shelf-life of geraniol with antibacterial and antioxidant properties. RSC Adv 6(52):46089–46099

    Article  CAS  Google Scholar 

  15. Celebioglu A, Uyar T (2011) Electrospinning of polymer-free nanofibers from cyclodextrin inclusion complexes. Langmuir 27(10):6218–6226

    Article  CAS  Google Scholar 

  16. Celebioglu A, Kayaci-Senirmak F, İpek S, Durgun E, Uyar T (2016) Polymer-free nanofibers from vanillin/cyclodextrin inclusion complexes: high thermal stability, enhanced solubility and antioxidant property. Food Funct 7(7):3141–3153

    Article  CAS  Google Scholar 

  17. Celebioglu A, Umu OC, Tekinay T, Uyar T (2014) Antibacterial electrospun nanofibers from triclosan/cyclodextrin inclusion complexes. Colloids Surf B 116:612–619

    Article  CAS  Google Scholar 

  18. Aytac Z, Yildiz ZI, Kayaci-Senirmak F, Tekinay T, Uyar T (2017) Electrospinning of cyclodextrin/linalool-inclusion complex nanofibers: fast-dissolving nanofibrous web with prolonged release and antibacterial activity. Food Chem 231:192–201

    Article  CAS  Google Scholar 

  19. Celebioglu A, Uyar T (2017) Antioxidant vitamin E/cyclodextrin inclusion complex electrospun nanofibers: enhanced water-solubility, prolonged shelf-life and photostability of vitamin E. J Agric Food Chem 65(26):5404–5412

    Article  CAS  Google Scholar 

  20. Celebioglu A, Yildiz ZI, Uyar T (2017) Electrospun nanofibers from cyclodextrin inclusion complexes with cineole and p-cymene: enhanced water solubility and thermal stability. Int J Food Sci Technol 53:112–120

    Article  Google Scholar 

  21. Celebioglu A, Aytac Z, Kilic ME, Durgun E, Uyar T (2017) Encapsulation of camphor in cyclodextrin inclusion complex nanofibers via polymer-free electrospinning: enhanced water solubility, high temperature stability, and slow release of camphor. J Mater Sci 53:5436–5449. https://doi.org/10.1007/s10853-017-1918-4

    Article  CAS  Google Scholar 

  22. Celebioglu A, Yildiz ZI, Uyar T (2018) Fabrication of electrospun eugenol/cyclodextrin inclusion complex nanofibrous webs for enhanced antioxidant property, water solubility, and high temperature stability. J Agric Food Chem 66:457–466

    Article  CAS  Google Scholar 

  23. Yildiz ZI, Celebioglu A, Kilic ME, Durgun E, Uyar T (2018) Menthol/cyclodextrin inclusion complex nanofibers: enhanced water-solubility and high-temperature stability of menthol. J Food Eng 224:27–36

    Article  CAS  Google Scholar 

  24. Celebioglu A, Yildiz ZI, Uyar T (2018) Thymol/cyclodextrin inclusion complex nanofibrous webs: enhanced water solubility, high thermal stability and antioxidant property of thymol. Food Res Int 106:280–290

    Article  CAS  Google Scholar 

  25. Burt S (2004) Essential oils: their antibacterial properties and potential applications in foods—a review. Int J Food Microbiol 94(3):223–253

    Article  CAS  Google Scholar 

  26. Bakkali F, Averbeck S, Averbeck D, Idaomar M (2008) Biological effects of essential oils–a review. Food Chem Toxicol 46(2):446–475

    Article  CAS  Google Scholar 

  27. Marques HMC (2010) A review on cyclodextrin encapsulation of essential oils and volatiles. Flavour Fragr J 25:313–326. https://doi.org/10.1002/ffj.2019

    Article  CAS  Google Scholar 

  28. Wadhwa G, Kumar S, Chhabra L, Mahant S, Rao R (2017) Essential oil–cyclodextrin complexes: an updated review. J Incl Phenom Macrocycl Chem 89:39–58. https://doi.org/10.1007/s10847-017-0744-2

    Article  CAS  Google Scholar 

  29. Ciobanu A, Landy D, Fourmentin S (2013) Complexation efficiency of cyclodextrins for volatile flavor compounds. Food Res Int 53:110–114. https://doi.org/10.1016/j.foodres.2013.03.048

    Article  CAS  Google Scholar 

  30. Can-Baser KH (2008) Biological and pharmacological activities of carvacrol and carvacrol bearing essential oils. Curr Pharm Des 14(29):3106–3119

    Article  Google Scholar 

  31. De Vincenzi M, Stammati A, De Vincenzi A, Silano M (2004) Constituents of aromatic plants: carvacrol. Fitoterapia 75(7):801–804

    Article  Google Scholar 

  32. Santos EH, Kamimura JA, Hill LE, Gomes CL (2015) Characterization of carvacrol beta-cyclodextrin inclusion complexes as delivery systems for antibacterial and antioxidant applications. LWT Food Sci Technol 60(1):583–592

    Article  CAS  Google Scholar 

  33. Higuchi T, Connors KA (1965) Phase solubility techniques. Adv Anal Chem Instrum 4:117–210

    CAS  Google Scholar 

  34. Pyrzynska K, Pękal A (2013) Application of free radical diphenylpicrylhydrazyl (DPPH) to estimate the antioxidant capacity of food samples. Anal Methods 5(17):4288–4295

    Article  CAS  Google Scholar 

  35. Brewster ME, Loftsson T (2007) Cyclodextrins as pharmaceutical solubilizers. Adv Drug Deliv Rev 59(7):645–666

    Article  CAS  Google Scholar 

  36. Sá Couto A, Salústio P, Cabral-Marques H (2015) Cyclodextrins. In: Ramawat K, Mérillon JM (eds) Polysaccharides. Springer, Cham, pp 247–288

    Chapter  Google Scholar 

  37. Uyar T, Besenbacher F (2008) Electrospinning of uniform polystyrene fibers: the effect of solvent conductivity. Polymer 49(24):5336–5343

    Article  CAS  Google Scholar 

  38. Lu Y, Liu S, Zhao Y, Zhu L, Yu S (2014) Complexation of Z-ligustilide with hydroxypropyl-β-cyclodextrin to improve stability and oral bioavailability. Acta Pharm 64(2):211–222

    Article  CAS  Google Scholar 

  39. Kayaci F, Uyar T (2011) Solid inclusion complexes of vanillin with cyclodextrins: their formation, characterization, and high-temperature stability. J Agric Food Chem 59(21):11772–11778

    Article  CAS  Google Scholar 

  40. Wei Y, Zhang J, Memon AH, Liang H (2017) Molecular model and in vitro antioxidant activity of a water-soluble and stable phloretin/hydroxypropyl-β-cyclodextrin inclusion complex. J Mol Liq 236:68–75

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Dr. Uyar acknowledges The Scientific and Technological Research Council of Turkey (TUBITAK), Turkey (Project #213M185) for funding this research. Z. I. Yildiz thanks to TUBITAK-BIDEB for the PhD scholarship. Dr. Durgun acknowledges the support from the Turkish Academy of Sciences—Outstanding Young Scientists Award Program (TUBA-GEBIP)—Turkey.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamer Uyar.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 964 kb)

Supplementary material 2 (MPG 8806 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yildiz, Z.I., Celebioglu, A., Kilic, M.E. et al. Fast-dissolving carvacrol/cyclodextrin inclusion complex electrospun fibers with enhanced thermal stability, water solubility, and antioxidant activity. J Mater Sci 53, 15837–15849 (2018). https://doi.org/10.1007/s10853-018-2750-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-2750-1

Keywords

Navigation