Skip to main content

Cyclodextrins

  • Reference work entry
  • First Online:
Polysaccharides

Abstract

Cyclodextrins (CDs) were first isolated in 1891 as degradation products of starch from a medium of Bacillus amylobacter. They are cyclic water-soluble, nonreducing, macrocycle carbohydrate polymers constructed from α-(1-4)-linked d-glucopyranose units (naturally occurring α, β, and γ formed by 6, 7, and 8 glucose units), in a ring formation and present a toroidal, hollow, truncated cone shape. Their most important property is the ability to establish specific interactions – molecular encapsulation – with various types of molecules through the formation of non-covalently bonded entities, either in the solid phase or in aqueous solution, taking up a whole molecule, or some part of it, into their cavities. This process in part mimics the “lock and key” mechanism of enzyme catalysis. Complexation may cause changes in physicochemical properties of the guest molecule (e.g., solubility, stability, kinetics and bioavailability, toxicity). Their negligible cytotoxic effects promoted them to the GRAS list and led them to be widely used in many industrial products and technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Almeida R, Cabral-Marques HM (2004) Pulmonary administration of beclomethasone: gamma-cyclodextrin complex. In: Duchêne D (ed) Proceedings of the 12th international cyclodextrin symposium, Montpellier. Editions de Santé/APGI Publishing, Paris, pp 889–892

    Google Scholar 

  • Al-Sharawi SZR, Ibrahim ASS, El-Shatoury EH, Gebreel HM, Eldiwany A (2013) A new low molecular mass alkaline cyclodextrin glucanotransferase from Amphibacillus sp. NRC-WN isolated from an Egyptian soda lake. Electron J Biotechnol 16:1–13

    CAS  Google Scholar 

  • Alves-Prado HF, Carneiro AAJ, Pavezzi FC, Gomes E, Boscolo M, Franco CML, da Silva R (2008) Production of cyclodextrins by CGTase from Bacillus clausii using different starches as substrates. Appl Biochem Biotechnol 146:3–13

    CAS  Google Scholar 

  • Antlsperger G, Schmid G (1996) Toxicological comparison of cyclodextrins. In: Szejtli J, Szente L (eds) Proceedings of the 8th international symposium on cyclodextrins, Budapest. Kluwer, Dordrecht, pp 149–155

    Google Scholar 

  • Aridogan BC, Baydar H, Kaya S, Demirci M, Ozbasar D, Mumcu E (2002) Antimicrobial activity and chemical composition of some essential oils. Arch Pharm Res 2:860–864

    Google Scholar 

  • Arima H, Tsutsumi T, Yoshimatsu A, Ikeda H, Motoyama K, Higashi T, Hirayama F, Uekama K (2011) Inhibitory effect of siRNA complexes with polyamidoamine dendrimer/α-cyclodextrin conjugate (generation 3, g3) on endogenous gene expression. Eur J Pharm Sci 44:375–384

    CAS  Google Scholar 

  • Babu RJ, Pandit JK (2004) Effect of cyclodextrins on the complexation and transdermal delivery of bupranolol through rat skin. Int J Pharm 271:155–165

    CAS  Google Scholar 

  • Bar R (1989) Cyclodextrin-aided bioconversions and fermentations. Trends Biotechnol 7:2–4

    CAS  Google Scholar 

  • Bas GL, Rysanek N (1987) Structural aspects of cyclodextrins. In: Duchêne D (ed) Cyclodextrins and their industrial uses. Editions de Santé, Paris, pp 107–130

    Google Scholar 

  • Bellringer ME, Smith TG, Read R, Gopinath C, Oliver P (1995) β-Cyclodextrin: 52-week toxicity studies in the rat and dog. Food Chem Toxicol 33:367–376

    CAS  Google Scholar 

  • Belščak-Cvitanović A, Stojanovićb R, Manojlović V, Komes D, Cindrić IJ, Nedović V, Bugarski B (2011) Encapsulation of polyphenolic antioxidants from medicinal plant extracts in alginate–chitosan system enhanced with ascorbic acid by electrostatic extrusion. Food Res Int 44:1094–1101

    Google Scholar 

  • Bender ML, Komiyama M (1978) Cyclodextrin chemistry. In: Springer-Verlag, Berlin

    Google Scholar 

  • Beraldo H, Sinisterra RD, Teixeira LR, Vieira RP, Doretto MC (2002) An effective anticonvulsant prepared following a host-guest strategy that uses hydroxypropyl-beta-cyclodextrin and benzaldehyde semicarbazone. Biochem Biophys Res Commun 296:241–246

    CAS  Google Scholar 

  • Brewster ME, Loftsson T (2007) Cyclodextrins as pharmaceutical solubilizers. Adv Drug Deliv Rev 59:645–662

    CAS  Google Scholar 

  • Cabral-Marques HM (1994a) Structure and properties of cyclodextrins. Inclusion complex formation. Rev Port Farm 44:77–84

    Google Scholar 

  • Cabral-Marques HM (1994b) Applications of cyclodextrins. Thermodynamic aspects of cyclodextrin complexes. Rev Port Farm 44:85–96

    Google Scholar 

  • Cabral-Marques HM (1994c) Cyclodextrins’ derivatives. Absorption, toxicity, metabolism and fate. Rev Port Farm 44:147–156

    Google Scholar 

  • Cabral-Marques HM (2008) Propriedades e Utilização das Ciclodextrinas como Transportadores de Fármacos/properties and uses of cyclodextrins as drug carriers. Rev Lusóf Ciên Tecnol Saúde 5:69–81

    Google Scholar 

  • Cabral-Marques HM (2010) A review on cyclodextrin encapsulation of essential oils and volatiles. Flavour Fragr J 25:313–326

    CAS  Google Scholar 

  • Cabral-Marques HM, Hadgraft J, Kellaway IW, Taylor G (1991) Studies of cyclodextrin inclusion complexes. Part IV. The pulmonary absorption of salbutamol from a complex with HP-beta-cyclodextrin in rabbits. Int J Pharm 77:303–307

    CAS  Google Scholar 

  • Carrier RL, Miller LA, Ahmed I (2007) The utility of cyclodextrins for enhancing oral bioavailability. J Control Release 123:78–99

    CAS  Google Scholar 

  • Charoenchaitrakool M, Dehghani F, Foster NR (2002) Utilization of supercritical carbon dioxide for complex formation of ibuprofen and methyl-beta-cyclodextrin. Int J Pharm 239:103–112

    CAS  Google Scholar 

  • Cheirsilp B, Suleeporn K, Maneerat S (2010) Kinetic characteristics of β-cyclodextrin production by cyclodextrin glycosyltransferase from newly isolated Bacillus sp. C26. Electron J Biotechnol 13:1–8

    Google Scholar 

  • Chin TF, Chung PH, Lach JL (1968) J Pharm Sci 57:44

    CAS  Google Scholar 

  • Ciobanu A, Landy D, Fourmentin S (2013) Complexation efficiency of cyclodextrins for volatile flavor compounds. Food Res Int 53:110–114

    CAS  Google Scholar 

  • Cowan MM (1999) Plant products as antimicrobial agents. Clin Microbiol Rev 12:564–582

    CAS  Google Scholar 

  • Cramer F (1982) Cyclodextrin – a paradigmatic model. In: Szejtli J (ed) Proceedings of I international symposium on cyclodextrins, Budapest. Reidel/Akadémiai Kiadó, Dordrecht/Budapest, pp 367–376

    Google Scholar 

  • Cramer F (1987) Cyclodextrins and their industrial uses. In: Duchêne D (ed) Introduction. Editions de Santé, Paris, pp 11–18

    Google Scholar 

  • Cramer F, Hettler H (1967) Naturwissenschaften 54:625

    CAS  Google Scholar 

  • Cramer F (1954) Einschlussverbindungen. Springer, Berlin

    Google Scholar 

  • Croft AP, Bartsch RA (1983) Synthesis of chemically modified cyclodextrins. Tetrahedron 39:1417–1474

    CAS  Google Scholar 

  • Daletos G, Papaioannou G, Miguel G, Cabral-Marques HM (2008) Improvement of organoleptic properties of thymol and carvacrol using β-cyclodextrin. In: Ueda H (ed) Proceedings of the 14th international cyclodextrin symposium, Kyoto. The Society of Cyclodextrins, Tokyo, pp 291–295

    Google Scholar 

  • Davies B, Morris T (1993) Physiological parameters in laboratory animals and humans. Pharm Res 10:1093–1095

    CAS  Google Scholar 

  • Davis ME, Brewster ME (2004) Cyclodextrin-based pharmaceutics: past, present and future. Nat Rev Drug Discov 3:1023–1035

    CAS  Google Scholar 

  • De Bie AT, Van Ommen B, Bar A (1998) Disposition of β-cyclodextrin in germ-free and conventional rats. Regul Toxicol Pharmacol 27:150–158

    Google Scholar 

  • De Repentigny L, Ratelle J, Leclerc JM, Cornu G, Sokal EM, Jacqmin P, De Beule K (1998) Repeated dose pharmacokinetics of an oral solution of itraconazole in infants and children. Antimicrob Agents Chemother 42:404–408

    Google Scholar 

  • Del Valle EMM (2003) Cyclodextrins and their uses: a review. Process Biochem 39:1033–1046

    Google Scholar 

  • Demerlis C, Goldring J, Velagaleti R, Brock W, Osterberg R (2009) Regulatory update: the IPEC novel excipient safety evaluation procedure. Pharm Technol 33:72–82

    CAS  Google Scholar 

  • Dona A, Pages G, Gilbert R, Kuchel P (2010) Digestion of starch: in vivo and in vitro kinetic models used to characterise oligosaccharide or glucose release. Carbohydr Polym 80:599–617

    CAS  Google Scholar 

  • Drumond N, Sá Couto A, Costa A, Cabral-Marques HM (2014) Study of aerodynamic and release properties of inhaled particles containing cyclodextrins. J Incl Phenom Macro Chem. doi:10.1007/s10847-014-0400-z

    Google Scholar 

  • Duchêne D, Wouessidjewe D (1990a) Pharmaceutical uses of cyclodextrins and derivatives. Drug Dev Ind Chem 16:2487–2499

    Google Scholar 

  • Duchêne D, Wouessidjewe D (1990b) Physicochemical characteristics and pharmaceutical uses of cyclodextrin derivatives, Part I. Acta Pharm Technol 14:26–34

    Google Scholar 

  • Duchêne D, Vaution C, Glomot F (1986) Cyclodextrins, their value in pharmaceutical technology. Drug Dev Ind Chem 12:2193–2215

    Google Scholar 

  • Eastburn SD, Tao BY (1994) Applications of modified cyclodextrins. Biotechnol Adv 12:325–339

    CAS  Google Scholar 

  • Endo T, Ueda H, Kobayashi S, Nagai T (1995) Isolation, purification and characterization of cyclomalto-dodecaose (η-CD). Carbohydr Res 269:369–373

    CAS  Google Scholar 

  • Endo T, Nagase H, Ueda H, Kobayashi S, Nagai T (1997a) Isolation, purification, and characterization of cyclomaltodecaose (ε-cyclodextrin), cyclomaltoundecaose (ζ-cyclodextrin) and cyclomaltotridecaose (θ-cyclodextrin). Chem Pharm Bull 45:532–536

    CAS  Google Scholar 

  • Endo T, Nagase H, Ueda H, Shigihara A, Kobayashi S, Nagai T (1997b) Isolation, purification, and characterization of cyclomaltotetradecaose (ι-cyclodextirn), cyclomaltopentadecaose (κ-cyclodextrin), cyclomaltohexadecaose (λ-cyclodextrin), and cyclomaltoheptadecaose (μ-cyclodextrin). Chem Pharm Bull 45:1856–1859

    CAS  Google Scholar 

  • Endo T, Nagase H, Ueda H, Shigihara A, Kobayashi S, Nagai T (1998) Isolation, purification and characterization of cyclomaltooctadecaose (ν-cyclodextrin), cyclomaltononadecaose (ξ-cyclodextrin), cyclomaltoeicosaose (ο-cyclodextrin) and cyclomaltoheneicosaose (π-cyclodextrin). Chem Pharm Bull 46:1840–1843

    CAS  Google Scholar 

  • Fages J, Rodier E, Chamaou A, Baron M (2007) Comparative study of two processes to improve the bioavailability of an active pharmaceutical ingredient: kneading and supercritical technology. Ec. des Mines d’Albi, RAPSODEE Res. Cent. 217:19

    Google Scholar 

  • Frank SG (1975) Inclusion compounds. J Pharm Sci 64:1585

    CAS  Google Scholar 

  • French D (1957) The Schardinger dextrins. Adv Carbohydr Chem 12:189–260

    CAS  Google Scholar 

  • French D, Pulley AO, Effenberger JA, Rougvie MA, Abdullah M (1965) Studies on the Schardinger dextrins. XII. The molecular size and structure of the delta-, epsilon-, zeta-, and eta-dextrins. Arch Biochem Biophys 111:153–160

    CAS  Google Scholar 

  • Freudenberg K, Cramer F (1948) Die Konstitution der Schardinger Dextrine a, b und g. Z Naturforsch B 3:464

    Google Scholar 

  • Freudenberg K, Meyer-Delius M (1938) Ber Dtsch Chem Ges 71:1596

    Google Scholar 

  • Freudenberg K, Plankenhorn E, Knauber H (1947) Chem Ind 731

    Google Scholar 

  • Frijlink HW, Visser J, Hefting NR, Oosting R, Meijer DK, Lerk CF (1990) The pharmacokinetics of β-cyclodextrin and hydroxypropyl-β-cyclodextrin in the rat. Pharm Res 7:1248–1252

    CAS  Google Scholar 

  • Frömming KH (1987) In: Breimer DD, Speiser P (eds) Topics in pharmaceutical sciences. Elsevier, Amsterdam, p 169

    Google Scholar 

  • Frömming KH, Szejtli J (1994) Cyclodextrins in pharmacy, Topics in inclusion science. Kluwer, Dordrecht

    Google Scholar 

  • Frömming KH, Wedelich V, Mehnert W (1987) J Incl Phenom 5:625

    Google Scholar 

  • Fujiwara T, Tanaka N, Kobayashi S (1990) Structure of δ-cyclodextrin•13.75 H2O. Chem Lett 739–742

    Google Scholar 

  • Gamsiz ED, Thombre AG, Ahmed I, Carrier RL (2013) Model predicting impact of complexation with cyclodextrins on oral absorption. Biotechnol Bioeng 110:2536–2547

    CAS  Google Scholar 

  • Gerloczy A, Antal S, Szathmari I, Muller-Horvath R, Szejtli J (1990) Absorption, distribution and excretion of 14C-labelled hydroxypropyl β-cyclodextrin in rats following oral administration. In: Duchéne D (ed) 5th international symposium on cyclodextrins, Paris. March de Sante, Paris, pp 507–513

    Google Scholar 

  • Gil A, Chamayou A, Leverd E, Bougaret J, Baron M, Couarraze G (2004) Evolution of the interaction of a new chemical entity, eflucimibe, with γ-cyclodextrin during kneading process. Eur J Pharm Sci 23:123–129

    CAS  Google Scholar 

  • Gou J, Zou Y, Ahn J (2011) Enhancement of antioxidant and antimicrobial activities of Dianthus superbus, Polygonum aviculare, Sophora flavescens, and Lygodium japonicum by pressure-assisted water extraction. Food Sci Biotechnol 20:283–287

    Google Scholar 

  • Gould S, Scott R (2005) 2-Hydroxypropyl-β-cyclodextrin (HP-β-CD): a toxicology review. Food Chem Toxicol 43:1451–1459

    CAS  Google Scholar 

  • Grosse PY, Bressolle F, Rouanet P, Joulia JM, Pinguet F (1999) Methyl-β-cyclodextrin and doxorubicin pharmacokinetics and tissue concentrations following bolus injection of these drugs alone or together in the rabbit. Int J Pharm 180:215–223

    CAS  Google Scholar 

  • Han SM (1997) Direct enantiomeric separations by high performance liquid chromatography using cyclodextrins. Biomed Chromatogr 11:259–271

    CAS  Google Scholar 

  • Hedges RA (1998) Industrial applications of cyclodextrins. Chem Rev 98:2035–2044

    CAS  Google Scholar 

  • Higashi T, Nishimura K, Yoshimatsu A, Ikeda H, Arima K, Motoyama K, Hirayama F, Uekama K, Arima H (2009) Preparation of four types of coenzyme Q10/gamma-cyclodextrin supramolecular complexes and comparison of their pharmaceutical properties. Chem Pharm Bull 57:965–970

    CAS  Google Scholar 

  • Higuchi T, Connors KA (1965) Phase-solubility techniques. Adv Anal Chem Instrum 4:117–212

    CAS  Google Scholar 

  • Hincal AA, Eroglu H, Bilensoy E (2011) Regulatory status of cyclodextrins in pharmaceutical products. In: Bilensoy E (ed) Cyclodextrins in pharmaceutics, cosmetic, and biomedicine: current and future industrial applications. Wiley, Hoboken

    Google Scholar 

  • Hirose T, Yamamoto Y (2001) Hinokitol containing cyclo-olefin polymer compositions and their molding with excellent antimicrobial and gas barrier properties. Japanese Patent JP 55480

    Google Scholar 

  • Ibrahim ASS, Al-Salamah AA, El-Tayeb MA, El-Badawi YB, Antranikian G (2012) A novel cyclodextrin glycosyltransferase from alkaliphilic Amphibacillus sp. NPST-10: purification and properties. Int J Mol Sci 13:10505–10522

    CAS  Google Scholar 

  • Irie T, Uekama K (1997) Pharmaceutical applications of cyclodextrins. III. Toxicological issues and safety evaluation. J Pharm Sci 86:147–162

    CAS  Google Scholar 

  • Ishibashi M, Kashikura A, Ozaki S, Kawakubo H (1999) Water absorbing sheet for packaging fresh product. Japanese Patent JP 11285368

    Google Scholar 

  • Jicsinszky L (2014) Cyclodextrin derivatives. CycloLab Cyclodextrin R&D Laboratory, Budapest. http://www.cyclolab.hu/elearning/synth_cd_jicsinszky.pdf. Accessed 10 June 2014

  • Jones SP, Grant DJW, Hadgraft J, Parr GD (1984) Cyclodextrins in pharmaceutical sciences. Part I. Preparation, structure and properties of cyclodextrins and cyclodextrin inclusion compounds. Acta Pharm Tech 30:213–223

    CAS  Google Scholar 

  • Junco S, Casimiro T, Ribeiro N, Nunes P, Cabral-Marques HM (2002) A comparative study of naproxen-beta-cyclodextrin complexes prepared by conventional methods and using supercritical carbon dioxide. J Incl Phenom Macro Chem 44:117–121

    CAS  Google Scholar 

  • Kitamura S (2000) Cyclic oligosaccharides and polysaccharides. In: Semlyen JA (ed) Cyclic polymers, 2nd edn. Kluwer, Dordrecht, p 125, Chapter 4

    Google Scholar 

  • Kleijn HJ, Zollinger DP, Van Den Heuvel MW, Kerbusch T (2011) Population pharmacokinetic-pharmacodynamic analysis for sugamadex-mediated reversal of rocuronium-induced neuromuscular blockade. Br J Clin Pharmacol 72:415–433

    CAS  Google Scholar 

  • Koizumi K, Sanbe H, Kubota Y, Terada Y, Takaha T (1999) Isolation and characterization of cyclic α-(1→4)-glucans having degrees of polymerization 9–31 and their quantitative analysis by high-performance anion-exchange chromatography with pulsed amperometric detection. J Chromatogr A 852:407–416

    CAS  Google Scholar 

  • Koo O (2011) Application challenges and examples of new excipients in advanced drug delivery systems. Am Pharm Rev 14:60–68

    CAS  Google Scholar 

  • Koutsou GA, Storey DM, Bär A (1999) Gastrointestinal tolerance of γ-cyclodextrin in humans. Food Addit Contam 16:313–317

    CAS  Google Scholar 

  • Kriaa M, Dorra Ayadi DZ, Jemli S, Sahnoun M, Bejar S, Kammoun R (2012) Improvement of cyclodextrin glycosyltransferase (CGTase) production by recombinant Escherichia coli pAD26 immobilized on the cotton. Biologia 67:1049–1055

    CAS  Google Scholar 

  • Kubota Y, Fukuda M, Muroguchi M, Koizumi K (1996) Absorption, distribution and excretion of β-cyclodextrin and glucosyl-β-cyclodextrin in rats. Biol Pharm Bull 19:1068–1072

    CAS  Google Scholar 

  • Kurkov SV, Loftsson T (2012) Cyclodextrins. Int J Pharm 453:167–180

    Google Scholar 

  • Larsen KL (2002) Large cyclodextrins. J Incl Phenom Macrocycl Chem 43:1–13

    CAS  Google Scholar 

  • Lederer M, Leipzig-Pagani E (1996) A simple alternative determination for the formation constant for the inclusion complex between rutin and β-cyclodextrin. Anal Chim Acta 329:311–314

    CAS  Google Scholar 

  • Li J, Loh X (2008) Cyclodextrin-based supramolecular architectures: syntheses, structures, and applications for drug and gene delivery. Adv Drug Del Rev 60:1000–1017

    CAS  Google Scholar 

  • Li JJ, Zhao F, Li J (2011) Supramolecular polymers based on cyclodextrins for drug and gene delivery. Adv Biochem Eng Biotechnol 125:207–249

    CAS  Google Scholar 

  • Lichtenthaler FW (2010) Carbohydrates: occurrence, structures and chemistry. In: Ullmann’s encyclopedia of industrial chemistry, 6th edn. Wiley-VCH, Weinheim

    Google Scholar 

  • Lina BAR, Bär A (2004a) Subchronic oral toxicity studies with α-cyclodextrin in rats. Regul Toxicol Pharmacol 39:S14–S26

    CAS  Google Scholar 

  • Lina BAR, Bär A (2004b) Subchronic (13-week) oral toxicity study of α- cyclodextrin in dogs. Regul Toxicol Pharmacol 39:S27–S33

    CAS  Google Scholar 

  • Loftsson T, Brewster ME (2012) Cyclodextrins as functional excipients: methods to enhance complexation efficiency. J Pharm Sci 101:3019–3032

    CAS  Google Scholar 

  • Loftsson T, Duchêne D (2007) Cyclodextrins and their pharmaceutical applications. Int J Pharm 329:1–11

    CAS  Google Scholar 

  • Loftsson T, Brewster ME, Másson M (2004) Role of cyclodextrins in improving oral drug delivery. Am J Drug Deliv 2:261–275

    CAS  Google Scholar 

  • Loftsson T, Hreinsdóttir D, Másson M (2005a) Evaluation of cyclodextrin solubilization of drugs. Int J Pharm 302:18–28

    CAS  Google Scholar 

  • Loftsson T, Jarho P, Másson M, Järvinen T (2005b) Cyclodextrins in drug delivery. Expert Opin Drug Deliv 2:335–351

    CAS  Google Scholar 

  • Loftsson T, Jansook P, Stefánsson E (2012) Topical drug delivery to the eye: dorzolamide. Acta Ophthalmol 90:603–608

    CAS  Google Scholar 

  • Loung JH, Nguyen AL (1997) Achiral selectivity in cyclodextrin modified capillary electrophoresis. J Chromatogr A 792:431–444

    Google Scholar 

  • Mabuchi N, Ngoa M (2001) Controlled release powdered flavour preparations and confectioneries containing preparations. Japanese Patent JP 128638

    Google Scholar 

  • MacNicol DD, McKendrick JJ, Wilson DR (1978) Clathrates and molecular inclusion phenomenon. Chem Soc Rev 7:65–87

    CAS  Google Scholar 

  • Matsuda H, Arima H (1999) Cyclodextrins in transdermal and rectal delivery. Adv Drug Deliv Rev 36:81–99

    CAS  Google Scholar 

  • Menezes P, Serafini M, Santana B, Nunes R, Quintans L Jr, Silva G, Isac Medeiros I, Marchioro M, Fraga B, Santos M, Araújo A (2012) Solid-state β-cyclodextrin complexes containing geraniol. Thermochem Acta 548:45–50

    CAS  Google Scholar 

  • Menezes P, Serafini M, Quintans-Júnior L, Silva G, Oliveira J, Carvalho F, Souza J, Matos J, Alves P, Matos I, Hădărugă D, Araújo A (2014) Inclusion complex of (-)-linalool and beta-cyclodextrin. J Therm Anal Calorim 115:2429–2437

    CAS  Google Scholar 

  • Merkus FWHM, Verhoef JC, Marttin E, Romeijn SG, van der Kuy PHM, Hermens WAJJ, Schipper NGM (1999) Cyclodextrins in nasal drug delivery. Adv Drug Deliv Rev 36:41–57

    CAS  Google Scholar 

  • Miller LA, Carrier RL, Ahmed I (2007) Practical considerations in development of solid dosage forms that contain cyclodextrins. J Pharm Sci 96:1691–1707

    CAS  Google Scholar 

  • Miyazawa H, Ueda H, Nagase T, Endo T, Kobayashi S, Nagai T (1995) Physicochemical properties and inclusion complex formation of δ-cyclodextrin. Eur J Pharm Sci 3:153–162

    CAS  Google Scholar 

  • Monbaliu J, van Beijsterveldt L, Meuldermans W, Szathmary S (1990) Disposition of hydroxypropyl β-cyclodextrin in experimental animals. In: 5th international symposium on cyclodextrins. de Santé, Paris, pp 514–517

    Google Scholar 

  • Mora MM, Sánchez KH, Santana RV, Rojas AP, Ramírez HL, Torres-Labandeira JJ (2012) Partial purification and properties of cyclodextrin glycosiltransferase (CGTase) from alkalophilic Bacillus species. Springerplus 1:61

    Google Scholar 

  • Mosher GL, Thompson DO (2002) Complexation and cyclodextrins. In: Swarbrick J, Boylan JC (eds) Encyclopedia of pharmaceutical technology, 2nd edn. Marcel Dekker, New York, pp 531–558

    Google Scholar 

  • Munro IC, Newberne PM, Young RR, Bär A (2004) Safety assessment of γ-cyclodextrin. Regul Toxicol Pharmacol 39:S3–S13

    CAS  Google Scholar 

  • Nieddu M, Rassu G, Boatto G, Bosi P, Trevisi P, Giunchedi P, Carta A, Gavini E (2014) Improvement of thymol properties by complexation with cyclodextrins: in vitro and in vivo studies. Carbohydr Polym 102:393–399

    CAS  Google Scholar 

  • Nishikawa S, Nagata T, Morisaki I, Oka T, Ishida H (1996) Pathogenesis of drug-induced gingival overgrowth. A review of studies in the rat model. J Periodontol 67:463–471

    CAS  Google Scholar 

  • Osterberg R, Demerlis C, Hobson D, Mcgovern T (2011) Trends in excipient safety evaluation. Int J Toxicol 30:600–610

    CAS  Google Scholar 

  • Pilcer G, Amighi K (2010) Formulation strategy and use of excipients in pulmonary drug delivery. Int J Pharm 392:1–19

    CAS  Google Scholar 

  • Pinho E, Grootveld M, Soares G, Henriques M (2013) Cyclodextrin-based hydrogels toward improved wound dressings. Crit Rev Biotechnol Crit Rev B 1–10

    Google Scholar 

  • Pinho E, Grootveld M, Soares G, Henriques M (2014) Cyclodextrins as encapsulation agents for plant bioactive compounds. Carbohydr Polym 101:121–135

    CAS  Google Scholar 

  • Pitha J, Szente L, Szejtli J (1983) Molecular encapsulation of drugs by cyclodextrins and congeners. In: Bruck SD (ed) Controlled drug delivery, vol 1. CRC Press, Boca Raton, pp 125–148

    Google Scholar 

  • Powell HM (1954) J Chem Soc 2658

    Google Scholar 

  • Powell HM (1948) J Chem Soc 61

    Google Scholar 

  • Prasad N, Strauss D, Reichart G (1999) Cyclodextrins inclusion for food, cosmetics and pharmaceuticals. European Patent 1084625

    Google Scholar 

  • Pulley OA, French D (1961) Studies on the Schardinger dextrins. XI. The isolation of new Schardinger dextrins. Biochem Biophys Res Commun 5:11–15

    CAS  Google Scholar 

  • Răileanu M, Todan L, Voicescu M, Ciuculescu C, Maria Maganu M (2013) A way for improving the stability of the essential oils in an environmental friendly formulation. Mater Sci Eng C 33:3281–3288

    Google Scholar 

  • Ramalhete N, Afonso R, Almeida R, Cabral-Marques HM (2001) The effect of formulation variables on the aerosol performance of spray-dried insulin. In: 1st international pharmaceutical congress, 2nd Mediterranean conference on drug controlled release, 10th Panhellenic pharmaceutical congress. New perspectives in controlled release, Atenas

    Google Scholar 

  • Rao VRS, Foster JF (1963) On the conformation of the D-glucopyranose ring in maltose and in higher polymers of D-glucose. J Phys Chem 67:951–952

    CAS  Google Scholar 

  • Rekharsky MV, Inoue Y (1998) Complexation thermodynamics of cyclodextrins. Chem Rev 98:1875–1917

    CAS  Google Scholar 

  • Rendleman JA Jr (1999) The production of cyclodextrins using CGTase from Bacillus macerans. In: Bucke C (ed) Carbohydrate biotechnology protocols, methods in biotechnology, vol 10. Humana Press, Totowa, pp 89–101

    Google Scholar 

  • Reuscher H, Hinsenkorn R (1996) BETA W7 MCT-new ways in surface modification. J Incl Phenom Macrocycl Chem 25:191–196

    CAS  Google Scholar 

  • Robyt JF (1998) Essentials of carbohydrate chemistry. Springer, Berlin

    Google Scholar 

  • Romi R, Lo Nostro P, Bocci E, Ridi F, Baglioni P (2005) Bioengineering of a cellulosic fabric for insecticide delivery via grafted cyclodextrin. Biotechnol Prog 21:1724–1730

    CAS  Google Scholar 

  • Rosso AM, Ferrarotti SA, Krymkiewicz N, Nudel BC (2002) Optimisation of batch culture conditions for cyclodextrin glucanotransferase production from Bacillus circulans DF 9R. Microb Cell Fact 3:1–9

    Google Scholar 

  • Sá Couto A, Vieira J, Florindo HF, Videira MA, Cabral-Marques HM (2014) Characterisation of DM-β-cyclodextrin:prednisolone complexes and their formulation as eye drops. J Incl Phenom Macrocycl Chem. doi:10.1007/s10847-014-0420-8

    Google Scholar 

  • Saenger W (1980) Cyclodextrin inclusion compounds in research and industry. Angew Chem Int Ed Engl 19:344–362

    Google Scholar 

  • Saenger W (1982) Structure aspects of cyclodextrin inclusion compounds. In: Szejtli J (ed) Proceedings of I international symposium on cyclodextrins, Budapest, 1981. Reidel/Akadémiai Kiadó, Dordrecht/Budapest, pp 141–150

    Google Scholar 

  • Saito Y, Tanemura I, Sato T, Ueda H (1999) Interaction of fragrance materials with 2-hydroxypropyl-beta-cyclodextrin by static and dynamic head-space methods. Int J Cosmet Sci 21:189–198

    CAS  Google Scholar 

  • Salústio PJ, Pontes P, Conduto C, Sanches I, Carvalho C, Arrais J, Cabral-Marques HM (2011) Advanced technologies for oral controlled release: cyclodextrins for oral controlled release. AAPS PharmSciTech 12:1276–1292

    Google Scholar 

  • Salústio PJ, Feio G, Figueirinhas J, Pinto J, Cabral-Marques HM (2009) The influence of the preparation methods on the inclusion of model drugs in a β-cyclodextrin cavity. Eur J Pharm Biopharm 71:377–386

    Google Scholar 

  • Santos AL, Gouveia E, Cabral-Marques HM (2004) Cyclodextrins salicylic acid formulation for psoriasis treatment. In: Duchêne D (ed) Proceedings of the 12th international cyclodextrin symposium (Montpellier, France). Editions de Santé/APGI Publishing, Paris, pp 885–888

    Google Scholar 

  • Sapkal N, Kilor V, Bhusari K, Daud (2007) Evaluation of some methods for preparing gliclazide- β-cyclodextrin inclusion complexes. Trop J Pharm Res 6:833–840

    Google Scholar 

  • Schardinger F (1903a) Uber die Zulässigkeit des Warmhaltens von zum Gebuß bestimmten Nahrungsmittel mittelst Wärme speichernder Apparate, sog. Thermopore. Wien Klin Wochenschr 468–474

    Google Scholar 

  • Schardinger F (1903b) Über Thermophile Bakterien aus verschiedenen Speisen und Milch, sowie über einige Umsetzungsprodukte derselben in kohlenhydrathaltigen Nährlösungen, darunter krystallisierte Polysaccharide (Dextrine) aus Stärke. Z Untersuch Nahr Genussm 6:865–880

    CAS  Google Scholar 

  • Schardinger F (1904) Wien Klin Wochenschr 17:207–209

    Google Scholar 

  • Schardinger F (1911) Bildung kristallisierter Polysaccharide (Dextrine) aus Stärkekleister durch Microben. Zentralbl Bakteriol Parasitenk Abt II 29:188–197

    Google Scholar 

  • Shahrazi S, Saallah S, Mokhtar MN, Baharuddin AS, Md Yunos KF (2013) Dynamic mathematical modelling of reaction kinetics for cyclodextrins production from different starch sources using Bacillus macerans cyclodextrin glucanotransferase. Am J Biochem Biotechnol 9:195–205

    CAS  Google Scholar 

  • Singh M, Sharma R, Banerjee UC (2002) Biotechnological applications of cyclodextrins. Biotechnol Adv 20:341–359

    CAS  Google Scholar 

  • Singh R, Mishra S, Kumar N (2010) Optimization of α-amylase production on agriculture byproduct by Bacillus cereus MTCC 1305 using solid state fermentation. Res J Pharm Biol Chem Sci 1:867

    CAS  Google Scholar 

  • Sivakumar N, Shakilabanu S (2013) Production of cyclodextrin glycosyltransferase by Bacillus megaterium. Int J Curr Microbiol App Sci 2:44–55

    Google Scholar 

  • Slain D, Rogers PD, Cleary JD, Chapman SW (2001) Intravenous itraconazole. Ann Pharmacother 35:720–729

    CAS  Google Scholar 

  • Sollogoub M (2013) Site-selective heterofunctionalization of cyclodextrins: discovery, development and use in catalysis. Synlett 24:2629–2640

    CAS  Google Scholar 

  • Stella VJ, He Q (2008) Cyclodextrins. Toxicol Pathol 36:30–42

    CAS  Google Scholar 

  • Stella VJ, Rajewski RA (1997) Cyclodextrins: their future in drug formulation and delivery. Pharm Res 14:556–557

    CAS  Google Scholar 

  • Stevens DA (1999) Itraconazole in cyclodextrin solution. Pharmacotherapy 19:603–611

    CAS  Google Scholar 

  • Sun DZ, Li L, Qiu XM, Liu F, Yin B-L (2006) Isothermal titration calorimetry and 1H NMR studies on host-guest interaction of paeonol and two of its isomers with β- cyclodextrin. Int J Pharm 316:7–13

    CAS  Google Scholar 

  • Szathmary SC, Seiler K-U, Luhmann I, Huss H-J (1990) Pharmacokinetic behavior and absolute bioavailability of hydroxypropyl β-cyclodextrin after increasing dosing in volunteers. In: Duchéne D (ed) 5th international symposium on cyclodextrins. de Sante, Paris, pp 535–540

    Google Scholar 

  • Szejtli J (1982) Cyclodextrin and their inclusion complexes. Akadémiai Kiadó, Budapest, pp 13 and 94–109

    Google Scholar 

  • Szejtli J (1989) Downstream processing using cyclodextrins. Trends Biotechnol 7:171–174

    Google Scholar 

  • Szejtli J (1998) Introduction and general overview of cyclodextrin chemistry. Chem Rev 98:1743–1753

    CAS  Google Scholar 

  • Szejtli J (2004) Past, present, and future of cyclodextrin research. Pure Appl Chem 76:1825–1845

    CAS  Google Scholar 

  • Szejtli J (2005) Cyclodextrin complexed generic drugs are generally not bio-equivalent with the reference products: therefore the increase in number of marketed drug/cyclodextrin formulations is so slow. J Incl Phenom Macro Chem 52:1–11

    CAS  Google Scholar 

  • Szejtli J (1985) Molecular entrapment and release properties of drugs by cyclodextrins. In: Smolen, VF, Ball LA (Eds.), Controlled Drug Bioavailability, Vol. 3, Wiley, New York, pp. 365–420

    Google Scholar 

  • Szejtli J (1988) Cyclodextrin technology. Kluwer, Dordrecht, p 450

    Google Scholar 

  • Szente L, Fenyvesi E, Szejtli J (1999) Entrapment of iodine with cyclodextrins-potential application of cyclodextrins in nuclear waste management. Environ Sci Technol 24

    Google Scholar 

  • WHO Technical Report Series (2002) Evaluation of certain food additives and contaminants, vol 909

    Google Scholar 

  • Thombre RS, Kanekar PP (2013) Synthesis of β- cyclodextrin by cyclodextrin glycosyltransferase produced by Bacillus licheniformis MCM–B 1010. J Microbiol Biotech Res 3:57–60

    CAS  Google Scholar 

  • Thompson DO (1997) Cyclodextrins-enabling excipients: their present and future use in pharmaceuticals. Crit Rev Ther Drug Carrier Syst 14:1–104

    CAS  Google Scholar 

  • Tiwari G, Tiwari R, Rai AK (2010) Cyclodextrins in delivery systems: applications. J Pharm Bioallied Sci 2:72–79

    CAS  Google Scholar 

  • Torres Marques M, Baptista AMJ, Cabral-Marques HM, Chitas IJ, Rodrigues de Carvalho M (1996) Método para aumentar a solubilidade e a estabilidade do cloranfenicol, através da formação de complexos de inclusão com ciclodextrinas, soluções contendo o referido complexo de inclusão e processo para separação dessas soluções. Portuguese Patent nr. 101

    Google Scholar 

  • Totterman AM, Schipper NG, Thompson DO, Mannermaa JP (1997) Intestinal safety of water-soluble -cyclodextrins in paediatric oral solutions of spironolactone: effects on human intestinal epithelial Caco-2 cells. J Pharm Pharmacol 49:43–48

    CAS  Google Scholar 

  • Ueda H, Ishii E, Motohama S, Endo T, Nagase H, Takaha T, Okada S (2000) Proceedings of the 10th international cyclodextrin symposium, Ann Arbor, 21–24 May

    Google Scholar 

  • Uekama K (1981) In: Yakugaku Zasshi, p 857

    Google Scholar 

  • Uekama K (2004) Design and evaluation of cyclodextrin-based drug formulation. Chem Pharm Bull 52:900–915

    CAS  Google Scholar 

  • Uekama K, Otagiri M (1987) Cyclodextrins in drug carrier systems. In: Bruck SD (Ed.), Critical Reviews in Therapeutic Drug Carrier Systems, CRC Press, Boca Raton, 3:1–40

    Google Scholar 

  • Uekama K, Hirayama F, Irie T (1998) Cyclodextrin drug carrier systems. Chem Rev 98:2045–2076

    CAS  Google Scholar 

  • Urban M, Beran M, Adámek L, Drahorád J, Molík P, Matušová K (2012) Cyclodextrin production from amaranth starch by cyclodextrin glycosyltransferase produced by Paenibacillus macerans CCM 2012. Czech J Food Sci 30:15–20

    CAS  Google Scholar 

  • Van Ommen B, De Bie AT, Bar A (2004) Disposition of 14C-α-cyclodextrin in germ-free and conventional rats. Regul Toxicol Pharmacol 39:57–66

    Google Scholar 

  • Villiers A (1891) Sur la fermentation de la fécule par l’action du ferment butyrique. C R Acad Sci 112:536–538

    Google Scholar 

  • Von Mach MA, BurhenneJ, Weilemann LS (2006) Accumulation of the solvent vehicle sulphobutyl β cyclodextrin sodium in critically ill patients treated with intravenous voriconazole under renal replacement therapy. BMC Clin Pharmacol 6

    Google Scholar 

  • Vozone C, Cabral-Marques HM (2002) Complexation of budesonide in cyclodextrins and particle aerodynamic characterization of its solid form for dry powder inhalation. J Incl Phenom 44:111–115

    CAS  Google Scholar 

  • Waleczek K, Cabral-Marques HM, Hempel B, Schmidt P (2003) Phase solubility studies of pure (2)-α-bisabolol and camomile essential oil with β-cyclodextrin. Eur J Pharm Biopharm 55:247–251

    CAS  Google Scholar 

  • Wang Z, Qi Q, Wang PG (2006) Engineering of cyclodextrin glucanotransferase on the cell surface of Saccharomyces cerevisiae for improved cyclodextrin production. Appl Env Microbiol 72:1873–1877

    CAS  Google Scholar 

  • Wang K, Yan Y, Zhao G, Xu W, Dong K, You C, Zhanga L, Xing J (2014) In vitro and in vivo application of hydroxypropyl-β-cyclodextrin-grafted polyethylenimine used as a transdermal penetration enhancer. Polym Chem 5:4658–4669

    CAS  Google Scholar 

  • Yano H, Kleinebudde P (2010) Improvement of dissolution behavior for poorly water-soluble drug by application of cyclodextrin in extrusion process: comparison between melt extrusion and wet extrusion. AAPS PharmSciTech 11:885–893

    CAS  Google Scholar 

  • Yoshida A, Arima H, Uekama K, Pitha J (1988) Pharmaceutical evaluation of hydroxyalkyl ethers of b-cyclodextrins. Int J Pharm 46:217–222

    CAS  Google Scholar 

  • Zhang J, Ma PX (2013) Cyclodextrin-based supramolecular systems for drug delivery: recent progress and future perspective. Adv Drug Deliv Rev 65:1215–1233

    CAS  Google Scholar 

  • Zhao X, Courtney JM (2006) Surface modification of polymeric biomaterials: utilization of cyclodextrins for blood compatibility improvement. J Biomed Mater Res A 80:539–553

    Google Scholar 

  • Zhekova BY, Stanchev VS (2011) Reaction conditions for maximal cyclodextrin production by cyclodextrin glucanotransferase from Bacillus megaterium. Pol J Microbiol 60:113–118

    CAS  Google Scholar 

  • Zhou H, Goldman M, Wu J, Woestenborghs R, Hassell AE, Lee P, Baruch A, Pesco-Koplowitz L, Borum J, Wheat LJ (1998) A pharmacokinetic study of intravenous itraconazole followed by oral administration of itraconazole capsules in patients with advanced human immunodeficiency virus infection. J Clin Pharmacol 38:593–602

    CAS  Google Scholar 

  • Zuo Z, Tam YK, Diakur J, Wiebe LT (2002) Hydroxypropyl-β-cyclodextrin-flutamide inclusion complex. II. Oral and intravenous pharmacokinetics of flutamide in the rat. J Pharm Sci 5:292–298

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helena Cabral-Marques .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this entry

Cite this entry

Sá Couto, A., Salústio, P., Cabral-Marques, H. (2015). Cyclodextrins. In: Ramawat, K., Mérillon, JM. (eds) Polysaccharides. Springer, Cham. https://doi.org/10.1007/978-3-319-16298-0_22

Download citation

Publish with us

Policies and ethics