Skip to main content
Log in

Microfluidic fabrication of core–sheath composite phase change microfibers with enhanced thermal conductive property

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The preparation of phase change fibers with controllable morphology, structure and enhanced thermal conductive property is of particular importance to many applications and still remains a challenge. In this study, core–sheath composite phase change microfibers with enhanced thermal conductive property are successfully prepared by microfluidic strategy, which consist of Rubitherm®27 (RT27) core and poly(vinyl butyral) (PVB) sheath blended with aluminum oxide nanoparticles (Al2O3 NPs). The effects of Al2O3 NPs on the morphologies, mechanical properties, phase change properties and thermal conductive properties of the produced composite microfibers are systematically investigated. The morphologies of the composite microfibers are continuous cylindrical shape with core–sheath structure. The modified Al2O3 NPs are uniformly dispersed in PVB matrix, and the thermal conductive property of the composite microfibers has improved significantly. The surface temperature of the Al2O3-incorporated composite microfibers changes faster than that of microfibers without Al2O3. The melting and crystallization times of the composite microfibers with 12% Al2O3 are decreased by 47.1 and 39.5%, respectively. It is expected that the results can provide a valuable guidance for fabrication of phase change microfibers with satisfactory heat conductive properties as well as fast thermal regulation properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Zhang XG, Wen RL, Huang ZH, Tang C, Huang YT, Liu YG, Fang MH, Wu XW, Min X, Xu YG (2017) Enhancement of thermal conductivity by the introduction of carbon nanotubes as a filler in paraffin/expanded perlite form-stable phase-change materials. Energy Build 149:463–470

    Article  Google Scholar 

  2. Song GL, Ma SD, Tang GY, Yin ZS, Wang XW (2010) Preparation and characterization of flame retardant form-stable phase change materials composed by EPDM, paraffin and nano magnesium hydroxide. Energy 35:2179–2183

    Article  CAS  Google Scholar 

  3. Colla L, Fedele L, Mancin S, Danza L, Manca O (2017) Nano-PCMs for enhanced energy storage and passive cooling applications. Appl Therm Eng 110:584–589

    Article  CAS  Google Scholar 

  4. Cai YB, Song L, He QL, Yang DD, Hu Y (2008) Preparation, thermal and flammability properties of a novel form-stable phase change materials based on high density polyethylene/poly(ethylene-co-vinyl acetate)/organophilic montmorillonite nanocomposites/paraffin compounds. Energy Convers Manag 49:2055–2062

    Article  CAS  Google Scholar 

  5. Wan YF, Zhou PC, Liu YD, Chen HX (2016) Novel wearable polyacrylonitrile/phase-change materials sheath/core nano-microfibers fabricated by coaxial electro-spinning. RSC Adv 6:21204–21209

    Article  CAS  Google Scholar 

  6. Sun SX, Xie R, Wang XX, Wen GQ, Liu Z, Wang W, Ju XJ, Chu LY (2015) Fabrication of nanomicrofibers with phase-change core and hydrophobic shell, via coaxial electrospinning using nontoxic solvent. J Mater Sci 50:5729–5738. https://doi.org/10.1007/s10853-015-9118-6

    Article  CAS  Google Scholar 

  7. Xu WX, Lu YC, Wang B, Xu JJ, Ye GD, Jiang MJ (2013) Preparation and characterization of high latent heat thermal regulating fiber made of PVA and paraffin. J Eng Fiber Fabr 8:44–49

    CAS  Google Scholar 

  8. Jiang X, Luo RL, Peng FF, Fang YT, Akiyama T, Wang SF (2015) Synthesis, characterization and thermal properties of paraffin microcapsules modified with nano-Al2O3. Appl Energy 137:731–737

    Article  CAS  Google Scholar 

  9. Wang TY, Wang SF, Luo RL, Zhu CY, Akiyama T, Zhang ZG (2016) Microencapsulation of phase change materials with binary cores and calcium carbonate shell for thermal energy storage. Appl Energy 171:113–119

    Article  CAS  Google Scholar 

  10. Fang GY, Chen Z, Li H (2010) Synthesis and properties of microencapsulated paraffin composites with SiO2 shell as thermal energy storage materials. Chem Eng J 163:154–159

    Article  CAS  Google Scholar 

  11. Krupa I, Nógellová Z, Špitalský Z, Janigová I, Boh B, Sumiga B, Angela Kleinová A, Karkri M, AlMaadeed MA (2014) Phase change materials based on high-density polyethylene filled with microencapsulated paraffin wax. Energy Convers Manag 87:400–409

    Article  CAS  Google Scholar 

  12. Li BX, Liu TX, Hu LY, Wang YF, Gao LN (2013) Fabrication and properties of microencapsulated paraffin@SiO2 phase change composite for thermal energy storage. ACS Sustain Chem Eng 1:374–380

    Article  CAS  Google Scholar 

  13. Rahbar RS, Maleki H, Kalantari B (2016) Fabrication of electrospun nanofibre yarn based on nylon 6/microencapsulated phase change materials. J Exp Nanosci 11:1402–1415

    Article  Google Scholar 

  14. Nelson G (2002) Application of microencapsulation in textiles. Int J Pharm 242:55–62

    Article  CAS  Google Scholar 

  15. Zalba B, Marín JM, Cabeza LF, Mehling H (2003) Review on thermal energy storage with phase change: materials, heat transfer analysis and applications. Appl Therm Eng 23:251–283

    Article  CAS  Google Scholar 

  16. Kim S, Shimazu J, Fukaminato T, Ogata T, Kurihara S (2017) Thermal conductivity of graphene oxide-enhanced polyvinyl alcohol composites depending on molecular interaction. Polymer 129:201–206

    Article  CAS  Google Scholar 

  17. Zhou ST, Chen Y, Zou HW, Liang M (2013) Thermally conductive composites obtained by flake graphite filling immiscible polyamide 6/polycarbonate blends. Thermochim Acta 566:84–91

    Article  CAS  Google Scholar 

  18. Kalácska G, Keresztes R, Földi L, Klébert S, Károly Z, Zsidai L (2016) Thermal conductivity of plasma modified polyethylene terephthalate and polyamide-6 layers. Express Polym Lett 10:373–380

    Article  Google Scholar 

  19. Ke HZ (2016) Preparation of electrospun LA-PA/PET/Ag form-stable phase change composite microfibers with improved thermal energy storage and retrieval rates via electrospinning and followed by UV irradiation photoreduction method. Fiber Polym 17:1198–1205

    Article  CAS  Google Scholar 

  20. Ke HZ, Pang ZY, Peng B, Wang J, Cai YB, Huang FL, Wei QF (2016) Thermal energy storage and retrieval properties of form-stable phase change nanofibrous mats based on ternary fatty acid eutectics/polyacrylonitrile composite by magnetron sputtering of silver. J Therm Anal Calorim 123:1293–1307

    Article  CAS  Google Scholar 

  21. Ke HZ (2017) Morphology and thermal performance of quaternary fatty acid eutectics/polyurethane/Ag form-stable phase change composite fibrous membranes. J Therm Anal Calorim 129:1533–1545

    Article  CAS  Google Scholar 

  22. Babapoor A, Karimi G, Khorram M (2016) Fabrication and characterization of nanofiber-nanoparticle-composites with phase change materials by electrospinning. Appl Therm Eng 99:1225–1235

    Article  CAS  Google Scholar 

  23. Cai YB, Xu XL, Gao CT, Wang L, Wei QF, Song L, Hu Y, Qiao H, Zhao Y, Chen Q, Fong H (2012) Effects of carbon nanotubes on morphological structure, thermal and flammability properties of electrospun composite microfibers consisting of lauric acid and polyamide 6 as thermal energy storage materials. Fiber Polym 13:837–845

    Article  CAS  Google Scholar 

  24. Cai YB, Zong X, Zhang JJ, Du JM, Dong ZD, Wei QF, Zhao Y, Chen Q, Fong H (2014) The improvement of thermal stability and conductivity via incorporation of carbon nanomicrofibers into electrospun ultrafine composite microfibers of lauric acid/polyamide 6 phase change materials for thermal energy storage. Int J Green Energy 11:861–875

    Article  CAS  Google Scholar 

  25. Cai YB, Gao CT, Zhang T, Zhang Z, Wei QF, Du JM, Hu Y, Song L (2013) Influences of expanded graphite on structural morphology and thermal performance of composite phase change materials consisting of fatty acid eutectics and electrospun PA6 nanofibrous mats. Renew Energy 57:163–170

    Article  CAS  Google Scholar 

  26. Ke HZ, Pang ZY, Xu YF, Chen XD, Fu JP, Cai YB, Huang FL, Wei QF (2014) Graphene oxide improved thermal and mechanical properties of electrospun methyl stearate/polyacrylonitrile form-stable phase change composite nanomicrofibers. J Therm Anal Calorim 117:109–122

    Article  CAS  Google Scholar 

  27. Zong X, Cai YB, Sun GY, Zhao Y, Huang FL, Song L, Hu Y, Fong H, Wei QF (2015) Fabrication and characterization of electrospun SiO2 nanomicrofibers absorbed with fatty acid eutectics for thermal energy storage/retrieval. Sol Energy Mater Sol Cells 132:183–190

    Article  CAS  Google Scholar 

  28. Lu Y, Xiao XD, Zhan YJ, Huan CM, Qi S, Cheng HL, Xu G (2018) Core–sheath paraffin-wax-loaded nanofibers by electrospinning for heat storage. ACS Appl Mater Interfaces 10:12759–12767

    Article  CAS  Google Scholar 

  29. Cheng J, Jun Y, Qin JH, Lee SH (2017) Electrospinning versus microfluidic spinning of functional fibers for biomedical applications. Biomaterials 114:121–143

    Article  CAS  Google Scholar 

  30. Li D, Xia YN (2010) Electrospinning of nanofibers: reinventing the wheel? Adv Mater 16:1151–1170

    Article  Google Scholar 

  31. Wang JF, Xie HQ, Guo ZX, Guan LH, Li Y (2014) Improved thermal properties of paraffin wax by the addition of TiO2 nanoparticles. Appl Therm Eng 73:1541–1547

    Article  CAS  Google Scholar 

  32. Teng TP, Yu CC (2012) Characteristics of phase-change materials containing oxide nano-additives for thermal storage. Nanoscale Res Lett 7:611–620

    Article  Google Scholar 

  33. He XH, Wang W, Deng K, Xie R, Ju XJ, Liu Z, Chu LY (2015) Microfluidic fabrication of chitosan microfibers with controllable internals from tubular to peapod-like structures. RSC Adv 5:928–936

    Article  CAS  Google Scholar 

  34. Choi CH, Yi H, Hwang S, Weitz DA, Lee CS (2011) Microfluidic fabrication of complex-shaped microfibers by liquid template-aided multiphase microflow. Lab Chip 11:1477–1483

    Article  CAS  Google Scholar 

  35. Kang E, Jeong GS, Choi YY, Lee KH, Khademhosseini A, Lee SH (2011) Digitally tunable physicochemical coding of material composition and topography in continuous microfibers. Nat Mater 10:877–883

    Article  CAS  Google Scholar 

  36. Cheng Y, Zheng FY, Lu J, Shang LR, Xie ZY, Zhao YJ, Chen YP, Gu ZZ (2014) Bioinspired multicompartmental microfibers from microfluidics. Adv Mater 26:5184–5190

    Article  CAS  Google Scholar 

  37. Chae SK, Kang E, Khademhosseini A, Lee SH (2013) Micro/nanometer-scale fiber with highly ordered structures by mimicking the spinning process of silkworm. Adv Mater 25:3071–3078

    Article  CAS  Google Scholar 

  38. Chang MH, Khademhosseini A, Park Y, Sun K, Lee SH (2008) Microfluidic chip-based fabrication of PLGA microfiber scaffolds for tissue engineering. Langmuir 24:6845–6851

    Article  Google Scholar 

  39. Jung JH, Choi CH, Chung S, Chung YM, Lee CS (2009) Microfluidic synthesis of a cell adhesive Janus polyurethane microfiber. Lab Chip 9:2596–2602

    Article  CAS  Google Scholar 

  40. Jeong W, Kim J, Kim S, Lee S, Mensing G, Beebe DJ (2004) Hydrodynamic microfabrication via “on the fly’’ photopolymerization of microscale microfibers and tubes. Lab Chip 4:576–580

    Article  CAS  Google Scholar 

  41. Liu W, Xu ZN, Sun LX, Guo P, Zeng CF, Wang CQ, Zhang LX (2017) Polymerization-induced phase separation fabrication: a versatile microfluidic technique to prepare microfibers with various cross sectional shapes and structures. Chem Eng J 315:25–34

    Article  CAS  Google Scholar 

  42. Yu Y, Wen H, Ma JY, Lykkemark S, Xu H, Qin JH (2014) Flexible fabrication of biomimetic bamboo-like hybrid microfibers. Adv Mater 26:2494–2499

    Article  CAS  Google Scholar 

  43. Shin SJ, Park JY, Lee JY, Park H, Park YD, Lee KB, Whang CM, Lee SH (2007) “on the fly” continuous generation of alginate microfibers using a microfluidic device. Langmuir 23:9104–9108

    Article  CAS  Google Scholar 

  44. Sharifi F, Bai ZH, Montazami R, Hashemi N (2016) Mechanical and physical properties of poly(vinyl alcohol) microfibers fabricated by microfluidic approach. RSC Adv 6:55343–55353

    Article  CAS  Google Scholar 

  45. Marimuthu M, Kim S, An J (2010) Amphiphilic triblock copolymer and a microfluidic device for porous microfiber fabrication. Soft Matter 6:2200–2207

    Article  CAS  Google Scholar 

  46. Wen GQ, Xie R, Liang WG, He XH, Wang W, Ju XJ, Chu LY (2015) Microfluidic fabrication and thermal characteristics of core–shell phase change microfibers with high paraffin content. Appl Therm Eng 87:471–480

    Article  CAS  Google Scholar 

  47. Jiang PK, Tanaka T (2011) A review of dielectric polymer composites with high thermal conductivity. IEEE Electr Insul Mag 27:8–16

    Google Scholar 

  48. Phattaranawik J, Jiraratananon R, Fane AG (2003) Heat transport and membrane distillation coefficients in direct contact membrane distillation. J Membr Sci 212:177–193

    Article  CAS  Google Scholar 

  49. Zhang L, Luo MF, Sun SS, Ma J, Li CZ (2010) Effect of surface structure of nano-CaCO3 particles on mechanical and rheological properties of PVC composites. J Macromol Sci B Phys 49:970–982

    Article  CAS  Google Scholar 

  50. Bayer IS, Biswas A, Ellialtioglu G (2014) Fabrication of super water repellent silverflake/copolymer blend films and their potential as smart fabrics. Polym Compos 35:1426–1435

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge support from the National Natural Science Foundation of China (21622604) and the State Key Laboratory of Polymer Materials Engineering (sklpme2016-3-07, sklpme2014-1-01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui Xie.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1279 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Xie, R., Hu, WX. et al. Microfluidic fabrication of core–sheath composite phase change microfibers with enhanced thermal conductive property. J Mater Sci 53, 15769–15783 (2018). https://doi.org/10.1007/s10853-018-2677-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-2677-6

Keywords

Navigation