Skip to main content
Log in

Deformation mechanisms and mechanical properties of porous magnesium/carbon nanofiber composites with different porosities

  • Composites
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

This study investigated mechanical properties and deformation mechanisms of porous magnesium–carbon nanofiber composites with different porosities manufactured through powder metallurgy. Compressive stress–strain curves of the samples exhibit three phases: Phase I of linear elastic deformation at low stress state, Phase II of a stress plateau, and Phase III of densification. The manufactured porous composites with different porosities show different deformation mechanisms. The composites with low porosity (i.e., 24 and 34%) manifest stretch-dominated deformation with hard (i.e., tension, compression) modes, while the composite with high porosity (i.e., 50%) demonstrates bending-dominated deformation with soft (i.e., bending) modes. The yield strength and the ultimate compressive strength decreased at an increasing rate with the increase in the porosity from 24 to 50%. Theoretical estimations were obtained for the yield strength of dense magnesium composites based on Gibson and Ashby model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Friedrich H, Schumann S (2001) Research for a “new age of magnesium” in the automotive industry. J Mater Process Technol 117:276–281

    Article  Google Scholar 

  2. Li Q, Chen EY, Bice DR, Dunand DC (2008) Mechanical properties of cast Ti-6Al-4V lattice block structures. Metall Mater Trans A 39:441–449

    Article  Google Scholar 

  3. Li Q, Chen EY, Bice DR, Dunand DC (2008) Mechanical properties of cast Ti-6Al-2Sn-4Zr-2Mo lattice block structures. Adv Eng Mater 10:939–942

    Article  Google Scholar 

  4. Thornton PH, Magee CL (1975) The deformation of aluminum foams. Metall Trans A 6:1253–1263

    Article  Google Scholar 

  5. Vinod Kumar GS, Mukherjee M, Garcia-Moreno F, Banhart J (2013) Reduced-pressure foaming of aluminum alloys. Metall Mater Trans A 44:419–426

    Article  Google Scholar 

  6. Fan X, Chen X, Liu X, Zhang H, Li Y (2013) Bubble formation at a submerged orifice for aluminum foams produced by gas injection method. Metall Mater Trans A 44:729–737

    Article  Google Scholar 

  7. Cao Z, Yu Y, Li M, Luo H (2016) Cell structure evolution of aluminum foams under reduced pressure foaming. Metall Mater Trans A 47:4378–4381

    Article  Google Scholar 

  8. Habibnejad-Korayem M, Mahmudi R, Poole W (2009) Enhanced properties of Mg-based nano-composites reinforced with Al2O3 nano-particles. Mater Sci Eng A 519:198–203

    Article  Google Scholar 

  9. Hassan S, Gupta M (2006) Effect of different types of nano-size oxide particulates on microstructural and mechanical properties of elemental Mg. J Mater Sci 41:2229–2236. https://doi.org/10.1007/s10853-006-7178-3

    Article  Google Scholar 

  10. Thakur SK, Kwee GT, Gupta M (2007) Development and characterization of magnesium composites containing nano-sized silicon carbide and carbon nanotubes as hybrid reinforcements. J Mater Sci 42:10040–10046. https://doi.org/10.1007/s10853-007-2004-0

    Article  Google Scholar 

  11. Li Q, Tian B (2013) Compression behavior of magnesium/carbon nanotube composites. J Mater Res 28:1877–1884

    Article  Google Scholar 

  12. Fukuda H, Kondoh K, Umeda J, Fugetsu B (2011) Fabrication of magnesium based composites reinforced with carbon nanotubes having superior mechanical properties. Mater Chem Phys 127:451–458

    Article  Google Scholar 

  13. Kondoh K, Fukuda H, Umeda J, Imai H, Fugetsu B, Endo M (2010) Microstructural and mechanical analysis of carbon nanotube reinforced magnesium alloy powder composites. Mater Sci Eng A 527:4103–4108

    Article  Google Scholar 

  14. Cay H, Xu H, Li Q (2013) Mechanical behavior of porous magnesium/alumina composites with high strength and low density. Mater Sci Eng A 574:137–142

    Article  Google Scholar 

  15. Li Q (2014) Carbon nanotube reinforced porous magnesium composite: 3D nondestructive microstructure characterization using x-ray micro-computed tomography. Mater Lett 133:83–86

    Article  Google Scholar 

  16. Li Q (2016) Effect of porosity and carbon composition on pore microstructure of magnesium/carbon nanotube composite foams. Mater Des 89:978–987

    Article  Google Scholar 

  17. Zou N, Li Q (2016) Compressive mechanical property of porous magnesium composites reinforced by carbon nanotubes. J Mater Sci 51:5232–5239. https://doi.org/10.1007/s10853-016-9824-8

    Article  Google Scholar 

  18. Xu H, Zou N, Li Q (2017) Effect of ball milling time on microstructure and hardness of porous magnesium/carbon nanofiber composites. JOM 69:1236–1243

  19. Xu H, Li Q (2017) Effect of carbon nanofiber concentration on mechanical properties of porous magnesium composites: experimental and theoretical analysis. Mater Sci Eng A 706:249–255

    Article  Google Scholar 

  20. Tibbetts G, Beetz C Jr (1987) Mechanical properties of vapour-grown carbon fibres. J Phys D Appl Phys 20:292

    Article  Google Scholar 

  21. Zhou Y, Pervin F, Rangari VK, Jeelani S (2006) Fabrication and evaluation of carbon nano fiber filled carbon/epoxy composite. Mater Sci Eng A 426:221–228

    Article  Google Scholar 

  22. Al-Saleh MH, Sundararaj U (2011) Review of the mechanical properties of carbon nanofiber/polymer composites. Compos A Appl Sci Manuf 42:2126–2142

    Article  Google Scholar 

  23. Bal S (2010) Experimental study of mechanical and electrical properties of carbon nanofiber/epoxy composites. Mater Des 31:2406–2413

    Article  Google Scholar 

  24. Breuer O, Sundararaj U (2004) Big returns from small fibers: a review of polymer/carbon nanotube composites. Polym Compos 25:630–645

    Article  Google Scholar 

  25. Natsuki T, Ni Q-Q, Wu S-H (2008) Temperature dependence of electrical resistivity in carbon nanofiber/unsaturated polyester nanocomposites. Polym Eng Sci 48:1345

    Article  Google Scholar 

  26. Galiyev A, Sitdikov O, Kaibyshev R (2003) Deformation behavior and controlling mechanisms for plastic flow of magnesium and magnesium alloy. Mater Trans 44:426–435

    Article  Google Scholar 

  27. Li Q, Tian B (2012) Mechanical properties and microstructure of pure polycrystalline magnesium rolled by different routes. Mater Lett 67:81–83

    Article  Google Scholar 

  28. Armstrong RW, Li Q (2015) Dislocation mechanics of high-rate deformations. Metall Mater Trans 46:4438–4453

    Article  Google Scholar 

  29. Liu B, Zheng YF, Ruan L (2011) In vitro investigation of Fe30Mn6Si shape memory alloy as potential biodegradable metallic material. Mater Lett 65:540–543

    Article  Google Scholar 

  30. Wu W, An K (2016) Understanding low-cycle fatigue life improvement mechanisms in a pre-twinned magnesium alloy. J Alloy Compd 656:539–550

    Article  Google Scholar 

  31. Tian B, Chen F, Tong YX, Li L, Zheng YF, Liu Y, Li Q (2011) Phase transition of Ni–Mn–Ga alloy powders prepared by vibration ball milling. J Alloys Compd 509:4563–4568

    Article  Google Scholar 

  32. Kingery W (1959) Densification during sintering in the presence of a liquid phase. I. Theory. J Appl Phys 30:301–306

    Article  Google Scholar 

  33. Gibson LJ, Ashby MF (1999) Cellular solids: structure and properties. Cambridge University Press, Cambridge

    Google Scholar 

  34. Ashby M (2006) The properties of foams and lattices. Philos Trans R Soc Lond A Math Phys Eng Sci 364:15–30

    Article  Google Scholar 

  35. Ashby MF, Evans T, Fleck NA, Hutchinson J, Wadley H, Gibson L (2000) Metal foams: a design guide. Elsevier, New York

    Google Scholar 

  36. Avedesian MM, Baker H (1999) ASM specialty handbook: magnesium and magnesium alloys. Materials Park, ASM International

    Google Scholar 

Download references

Acknowledgement

The support for the research from the National Science Foundation under Award No. 1449607 is greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qizhen Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, H., Li, Q. Deformation mechanisms and mechanical properties of porous magnesium/carbon nanofiber composites with different porosities. J Mater Sci 53, 14375–14385 (2018). https://doi.org/10.1007/s10853-018-2649-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-2649-x

Keywords

Navigation