Skip to main content
Log in

Carbon encapsulation of elemental nanoparticles by spark discharge

  • Composites
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A study was carried out on the carbon encapsulation of a number of elements using a spark discharge generator. The study showed that elements W, V, Ti, and Si formed carbides which were encapsulated successfully by graphitic layers forming a sound core–shell structure. Copper formed a partially filled core–shell structure, attributed to its relatively low condensation temperature, where considerable shrinkage seemed to have occurred after the encapsulation. Mg could not be encapsulated in a core–shell form but rather yielded an embedded structure where Mg is condensed onto already condensed carbonaceous material. Analysis of current observations coupled with those already reported data imply a simple mechanism for encapsulation. Metals/compounds that are solid above the condensation temperature of carbon give rise to a sound core–shell structure. Elements whose condensation temperature is less than that of carbon could still produce core–shell particles but they may be partially filled. It is estimated that the process of graphitic encapsulation may be complete around 1900 K and partially filled core–shell structure might develop depending on the volume shrinkage upon cooling to room temperature. Elements/compounds whose condensation temperature is below the encapsulation temperature fail to develop core–shell structure. Instead, they form embedded composite structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Notes

  1. It should be noted that the encapsulation behavior depicted here refers to gas—phase synthesis where both carbon in sufficient quantity and the metal are in gaseous phase. For instance, according to the present groupings, Ag is expected to form a partially filled core–shell structure. However, the method does exist, see Ref. [13], which would yield these particles with a fully filled core–shell structure.

References

  1. Swihart MT (2003) Vapor-phase synthesis of nanoparticles. Curr Opin Colloid Interface Sci 8:127–133. https://doi.org/10.1016/S1359-0294(03)00007-4

    Article  Google Scholar 

  2. Lee S, Hong J, Koo JH (2013) Synthesis of few-layered graphene nanoballs with copper cores using solid carbon source. ACS Appl Mater Interfaces 5(7):2432–2437. https://doi.org/10.1021/am3024965

    Article  Google Scholar 

  3. Fernández Y, Menéndez JA, Phillips J, Luhrs C (2009) Graphitic encapsulation of micron- and nano-sized Ni particles using ethylene as precursor. Appl Surf Sci 256(1):194–201. https://doi.org/10.1016/j.apsusc.2009.07.110

    Article  Google Scholar 

  4. Zhang H, Liang C, Liu J (2013) The formation of onion-like carbon-encapsulated cobalt carbide core/shell nanoparticles by the laser ablation of metallic cobalt in acetone. Carbon 55:108–115. https://doi.org/10.1016/j.carbon.2012.12.015

    Article  Google Scholar 

  5. Moskon J, Dominko R, Cerc-Korosec R (2007) Morphology and electrical properties of conductive carbon coatings for cathode materials. J Power Sources 174(2):683–688. https://doi.org/10.1016/j.jpowsour.2007.06.239

    Article  Google Scholar 

  6. Fronczak M, Łabędź O, Kaszuwara W, Bystrzejewski M (2018) Corrosion resistance studies of carbon-encapsulated iron nanoparticles. J Mater Sci 53:3805–3816. https://doi.org/10.1007/s10853-017-1793-z

    Article  Google Scholar 

  7. Guo YG, Hu JS, Wan LJ (2008) Nanostructured materials for electrochemical energy conversion and storage devices. Adv Mater 20(15):2878–2887. https://doi.org/10.1002/adma.200800627

    Article  Google Scholar 

  8. Li Y, Wu J, Chopra N (2015) Nano-carbon-based hybrids and heterostructures: progress in growth and application for lithium-ion batteries. J Mater Sci 50:7843–7865. https://doi.org/10.1007/s10853-015-9429-7

    Article  Google Scholar 

  9. Teki R, Datta MK, Krishnan R, Parker CT, Lu TM, Kumta PN, Korathar N (2009) Nanostructured silicon anodes for lithium ion rechargeable batteries. Small 5(20):2236–2242. https://doi.org/10.1002/smll.200900382

    Article  Google Scholar 

  10. Zuo X, Zhu J, Müller-Buschbaum P, Cheng YJ (2017) Silicon based lithium-ion battery anodes: a chronicle perspective review. Nano Energy 31:113–143. https://doi.org/10.1016/j.nanoen.2016.11.013

    Article  Google Scholar 

  11. Rahman MA, Song G, Bhatt AI, Wong CY, Wen C (2016) Nanostructured silicon anodes for high-performance lithium-ion batteries. Adv Funct Mater. https://doi.org/10.1002/adfm.201502959

    Google Scholar 

  12. Zhang C, Song H, Liu C, Liu Y, Zhang C, Nan X, Cao G (2015) Fast and reversible Li ion insertion in carbon-encapsulated Li3VO4 as anode for lithium-ion battery. Adv Funct Mater. https://doi.org/10.1002/adfm.201500644

    Google Scholar 

  13. Bian J, Li Q, Huang C, Guo Y, Zaw M, Zhang RQ (2015) A durable surface-enhanced Raman scattering substrate: ultrathin carbon layer encapsulated Ag nanoparticle arrays on indium–tin-oxide glass. Phys Chem Chem Phys 17:14849–14855. https://doi.org/10.1039/c4cp05803h

    Article  Google Scholar 

  14. Li X, Meduri P, Chen X, Qi W, Engelhard MH, Xu W, Liu J (2012) Hollow core–shell structured porous Si–C nanocomposites for Li-ion battery anodes. J Mater Chem 22(22):11014. https://doi.org/10.1039/c2jm31286g

    Article  Google Scholar 

  15. Bystrzejewski M, Huczko A, Lange H (2005) Arc plasma route to carbon-encapsulated magnetic nanoparticles for biomedical applications. Sens Actuators B Chem 109(1):81–85. https://doi.org/10.1016/j.snb.2005.03.029

    Article  Google Scholar 

  16. Byeon JH, Park JH, Yoon KY, Hwang J (2009) Ambient spark generation to synthesize carbon-encapsulated metal nanoparticles in continuous aerosol manner. Nanoscale 1(3):339. https://doi.org/10.1039/b9nr00058e

    Article  Google Scholar 

  17. Xiaomin W, Bingshe X, Husheng J, Xuguang L, Hideki I (2006) HRTEM and Raman study of onion-like fullerenes encapsulated Fe. J Phys Chem Solids 67(4):871–874. https://doi.org/10.1016/j.jpcs.2005.12.010

    Article  Google Scholar 

  18. Bystrzejewski M, Károly Z, Szépvölgyi J, Huczko A, Lange H (2011) Continuous synthesis of controlled size carbon-encapsulated iron nanoparticles. Mater Res Bull 46(12):2408–2417. https://doi.org/10.1016/j.materresbull.2011.08.047

    Article  Google Scholar 

  19. Bystrzejewski M, Karoly Z, Szepvolgyi J, Kaszuwara W, Huczko A, Lange H (2009) Continuous synthesis of carbon-encapsulated magnetic nanoparticles with a minimum production of amorphous carbon. Carbon 47(8):2040–2048. https://doi.org/10.1016/j.carbon.2009.03.054

    Article  Google Scholar 

  20. Abdullaeva Z, Omurzak E, Iwamoto C, Ihara H, Ganapathy HS, Sulaimankulova S, Mashimo T (2013) Pulsed plasma synthesis of iron and nickel nanoparticles coated by carbon for medical applications. Jpn J Appl Phys. https://doi.org/10.7567/jjap.52.01aj01

    Google Scholar 

  21. Kang J, Kim Y, Kim H, Hu X, Saito N, Choi J, Lee M (2016) In-situ one-step synthesis of carbon-encapsulated naked magnetic metal nanoparticles conducted without additional reductants and agents. Sci Rep. https://doi.org/10.1038/srep38652

    Google Scholar 

  22. Jiao J, Seraphin S (1998) Carbon encapsulated nanoparticles of Ni, Co, Cu, and Ti. J Appl Phys 83(5):2442–2448. https://doi.org/10.1063/1.367004

    Article  Google Scholar 

  23. Byeon JH, Kim J (2010) Morphology and structure of aerosol carbon-encapsulated metal nanoparticles from various ambient metal−carbon spark discharges. ACS Appl Mater Interfaces 2(4):947–951. https://doi.org/10.1021/am100015a

    Article  Google Scholar 

  24. Tomita M, Saito Y, Hayashi T (1993) LaC2 encapsulated in graphite nano-particle. Jpn J Appl Phys 32:280–282. https://doi.org/10.1143/JJAP.32.L280

    Article  Google Scholar 

  25. Saito Y, Okuda M, Yoshikawa T, Kasuya A, Nishina Y (1994) Correlation between volatility of rare-earth metals and encapsulation of their carbides in carbon nanocapsules. J Phys Chem 98(27):6696–6698. https://doi.org/10.1021/j100078a008

    Article  Google Scholar 

  26. Seraphin S, Zhou D, Jiao J (1996) Filling the carbon nanocages. J Appl Phys 80(4):2097–2104. https://doi.org/10.1063/1.363102

    Article  Google Scholar 

  27. Elliott BR, Host JJ, Dravid VP, Teng MH, Hwang J (1997) A descriptive model linking possible formation mechanisms for graphite-encapsulated nanocrystals to processing parameters. J Mater Res 12(12):3328–3344. https://doi.org/10.1557/jmr.1997.0438

    Article  Google Scholar 

  28. Feng J, Guo X, Ramlawi N, Pfeiffer TV, Geutjens R, Basak S, Schmidt-Ott A (2016) Green manufacturing of metallic nanoparticles: a facile and universal approach to scaling up. J Mater Chem A 4(29):11222–11227. https://doi.org/10.1039/c6ta03221d

    Article  Google Scholar 

  29. Tabrizi NS, Ullmann M, Vons VA, Lafont U, Schmidt-Ott A (2008) Generation of nanoparticles by spark discharge. J Nanopart Res 11(2):315–332. https://doi.org/10.1007/s11051-008-9407-y

    Article  Google Scholar 

  30. Zeng M, Tan L, Wang J, Chen L, Rümmeli MH, Fu L (2014) Liquid metal: an innovative solution to uniform graphene films. Chem Mater 26(12):3637–3643. https://doi.org/10.1021/cm501571h

    Article  Google Scholar 

  31. Saito Y (1996) Nanoparticles and filled nanocapsules. Carbon Nanotubes. https://doi.org/10.1016/b978-0-08-042682-2.50023-0

    Google Scholar 

  32. Mchenry ME, Majetich SA, Artman JO, Degraef M, Staley SW (1994) Superparamagnetism in carbon-coated Co particles produced by the Kratschmer carbon arc process. Phys Rev B 49(16):11358–11363. https://doi.org/10.1103/physrevb.49.11358

    Article  Google Scholar 

  33. Aktekin B, Eyövge C, Öztürk T (2017) Carbon coating of magnesium particles. J Alloy Compd 720:17–21. https://doi.org/10.1016/j.jallcom.2017.05.241

    Article  Google Scholar 

  34. Assael MJ, Kalyva AE, Antoniadis KD, Banish RM, Egry I, Wu J, Wakeham WA (2010) Reference data for the density and viscosity of liquid copper and liquid tin. J Phys Chem Ref Data 39(3):033105. https://doi.org/10.1063/1.3467496

    Article  Google Scholar 

Download references

Acknowledgements

The work reported in this paper was carried out within EU FP7 ERAfrica program—the Project HENERGY. The support was provided by the Scientific and Technological Research Council of Turkey (TUBITAK) with Project No. 114M128, which the authors gratefully acknowledge.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tayfur Öztürk.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Livan, P., Öztürk, T. Carbon encapsulation of elemental nanoparticles by spark discharge. J Mater Sci 53, 14350–14360 (2018). https://doi.org/10.1007/s10853-018-2647-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-2647-z

Keywords

Navigation