Skip to main content
Log in

Tensile strength, peel load, and static puncture resistance of laminated composites reinforced with nonwoven fabric

  • Composites
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Nonwoven fabrics were used as reinforcement to laminated composites to improve the mechanical properties and damage behaviors. The needle-punched Kevlar/LMPET nonwoven interlayer and two TPU covers were combined via thermal bonding to form the laminated composites. Tensile strength, peel load, and static puncture resistance of the laminated composites were evaluated in terms of needle punching rate and depth of the nonwoven interlayer. Results showed that tensile strength and static puncture resistance depended on the needle punching depth, primarily on the tangled fiber points. The peel load was dependent on the needle punching rate, especially on the resulting melted LMPET fibers. The laminated composites exhibited desirable tensile properties, peel load, and static puncture resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

References

  1. Lee Y-J, Chung C-H (2003) Study on the mechanical properties of marine FRP laminates. J Compos Mater 37(11):967–983. https://doi.org/10.1177/0021998303037011002

    Article  Google Scholar 

  2. Kaluza A, Kleemann S, Fröhlich T, Herrmann C, Vietor T (2017) Concurrent design and life cycle engineering in automotive lightweight component development. Proc CIRP 66:16–21. https://doi.org/10.1016/j.procir.2017.03.293

    Article  Google Scholar 

  3. Mittal G, Rhee KY, Mišković-Stanković V, Hui D (2018) Reinforcements in multi-scale polymer composites: processing, properties, and applications. Compos Part B Eng 138:122–139. https://doi.org/10.1016/j.compositesb.2017.11.028

    Article  Google Scholar 

  4. Möhring HC (2017) Composites in Production Machines. Proc CIRP 66:2–9. https://doi.org/10.1016/j.procir.2017.04.013

    Google Scholar 

  5. He Q, Cao S, Wang Y, Xuan S, Wang P, Gong X (2018) Impact resistance of shear thickening fluid/Kevlar composite treated with shear-stiffening gel. Compos A Appl Sci Manuf 106:82–90. https://doi.org/10.1016/j.compositesa.2017.12.019

    Article  Google Scholar 

  6. Yao S-S, Jin F-L, Rhee KY, Hui D, Park S-J (2018) Recent advances in carbon-fiber-reinforced thermoplastic composites: a review. Compos Part B Eng 142:241–250. https://doi.org/10.1016/j.compositesb.2017.12.007

    Article  Google Scholar 

  7. Scalici T, Fiore V, Valenza A (2018) Experimental assessment of the shield-to-salt-fog properties of basalt and glass fiber reinforced composites in cork core sandwich panels applications. Compos Part B Eng 144:29–36. https://doi.org/10.1016/j.compositesb.2018.02.021

    Article  Google Scholar 

  8. Ilango V, Shabaridharan K, Kumar NS, Perumalraj R (2018) Tensile characteristics of sisal and polypropylene fibre non-woven materials for geo-textile applications. J Ind Text 47(7):1702–1715. https://doi.org/10.1177/1528083717708481

    Article  Google Scholar 

  9. Lin J-H, Hsieh J-C, Huang C-H, Hsing W-H, Huang C-L, Tan H-J, Lou C-W (2017) Effects of needle punching and hot pressing on mechanical properties of composite geotextiles. J Ind Text 47(4):522–534. https://doi.org/10.1177/1528083716654467

    Article  Google Scholar 

  10. Shi S, Sun Z, Hu X, Chen H (2014) Carbon-fiber and aluminum-honeycomb sandwich composites with and without Kevlar-fiber interfacial toughening. Compos A Appl Sci Manuf 67:102–110. https://doi.org/10.1016/j.compositesa.2014.08.017

    Article  Google Scholar 

  11. Sun Z, Hu X, Sun S, Chen H (2013) Energy-absorption enhancement in carbon–fiber aluminum–foam sandwich structures from short aramid-fiber interfacial reinforcement. Compos Sci Technol 77:14–21. https://doi.org/10.1016/j.compscitech.2013.01.016

    Article  Google Scholar 

  12. Yuan B, Wee EPJ, Cheong JLK, Speelman A, Long RTJ, Jiang B, Li Y, Hu X (2017) Quasi-Z-directional toughening from un-bonded non-woven veil at interface in laminar composites. Compos Commun 6:20–24. https://doi.org/10.1016/j.coco.2017.07.007

    Article  Google Scholar 

  13. Huang B-Z, Hu X-Z, Liu J (2004) Modelling of inter-laminar toughening from chopped Kevlar fibers. Compos Sci Technol 64(13):2165–2175. https://doi.org/10.1016/j.compscitech.2004.03.014

    Article  Google Scholar 

  14. Miao M (2004) An experimental study of the needled nonwoven process part II: fiber transport by barbed needles. Text Res J 74(5):394–398. https://doi.org/10.1177/004051750407400504

    Article  Google Scholar 

  15. Miao M, Glassey HE, Rastogi M (2004) An experimental study of the needled nonwoven process: part III: fiber damage due to needling. Text Res J 74(6):485–490. https://doi.org/10.1177/004051750407400604

    Article  Google Scholar 

  16. Chen J-F, Morozov EV, Shankar K (2014) Simulating progressive failure of composite laminates including in-ply and delamination damage effects. Compos A Appl Sci Manuf 61:185–200. https://doi.org/10.1016/j.compositesa.2014.02.013

    Article  Google Scholar 

  17. Zhao L, Wang Y, Zhang J, Gong Y, Lu Z, Hu N, Xu J (2017) An interface-dependent model of plateau fracture toughness in multidirectional CFRP laminates under mode I loading. Compos Part B Eng 131:196–208. https://doi.org/10.1016/j.compositesb.2017.07.077

    Article  Google Scholar 

  18. Yu B, Khaderi SN, Deshpande VS, Fleck NA (2018) The effect of matrix shear strength on the out-of-plane compressive strength of CFRP cross-ply laminates. Int J Solids Struct. https://doi.org/10.1016/j.ijsolstr.2018.01.023

    Google Scholar 

  19. Zhang Z, Li B (2018) Effects of the shear lag on longitudinal strain and flexural stiffness of flanged RC structural walls. Eng Struct 156:130–144. https://doi.org/10.1016/j.engstruct.2017.11.020

    Article  Google Scholar 

  20. Walker L, Hu X-Z (1999) Comparison of carbon fibre/epoxy composites reinforced by short aramid and carbon fibres. Scripta Mater 41(6):575–582. https://doi.org/10.1016/S1359-6462(99)00193-1

    Article  Google Scholar 

  21. Xu F, Huang D-d DuX (2018) Improving the delamination resistance of carbon fiber/epoxy composites by brushing and abrading of the woven fabrics. Constr Build Mater 158:257–263. https://doi.org/10.1016/j.conbuildmat.2017.10.015

    Article  Google Scholar 

  22. McElroy M, Jackson W, Olsson R, Hellström P, Tsampas S, Pankow M (2017) Interaction of delaminations and matrix cracks in a CFRP plate, Part I: a test method for model validation. Compos A Appl Sci Manuf 103:314–326. https://doi.org/10.1016/j.compositesa.2017.09.011

    Article  Google Scholar 

  23. Boyd SE, Bogetti TA, Staniszewski JM, Lawrence BD, Walter MS (2018) Enhanced delamination resistance of thick-section glass-epoxy composite laminates using compliant thermoplastic polyurethane interlayers. Compos Struct 189:184–191. https://doi.org/10.1016/j.compstruct.2018.01.062

    Article  Google Scholar 

  24. Ayca G, Binnaz M (2005) Sewing needle penetration forces and elastane fiber damage during the sewing of cotton/elastane woven fabrics. Text Res J 75(8):628–633. https://doi.org/10.1177/0040517505057640

    Article  Google Scholar 

  25. Chen X, Chen L, Zhang C, Song L, Zhang D (2016) Three-dimensional needle-punching for composites: a review. Compos A Appl Sci Manuf 85:12–30. https://doi.org/10.1016/j.compositesa.2016.03.004

    Article  Google Scholar 

  26. Shetty Ravindra R, Rai SK (2011) Performance analysis of waste silk fabric-reinforced vinyl ester resin laminates. J Compos Mater 45(23):2475–2480. https://doi.org/10.1177/0021998311401097

    Article  Google Scholar 

  27. Silberstein MN, Pai C-L, Rutledge GC, Boyce MC (2012) Elastic–plastic behavior of non-woven fibrous mats. J Mech Phys Solids 60(2):295–318. https://doi.org/10.1016/j.jmps.2011.10.007

    Article  Google Scholar 

  28. Russo P, Acierno D, Marletta G, Destri GL (2013) Tensile properties, thermal and morphological analysis of thermoplastic polyurethane films reinforced with multiwalled carbon nanotubes. Eur Polym J 49(10):3155–3164. https://doi.org/10.1016/j.eurpolymj.2013.07.021

    Article  Google Scholar 

  29. Wang J, Shi C, Yang N, Sun H, Liu Y, Song B (2018) Strength, stiffness, and panel peeling strength of carbon fiber-reinforced composite sandwich structures with aluminum honeycomb cores for vehicle body. Compos Struct 184:1189–1196. https://doi.org/10.1016/j.compstruct.2017.10.038

    Article  Google Scholar 

  30. Ruosi Y, Rui W, Ching-Wen L, Jia-Horng L (2015) Compressive properties of high-resilience thermal-bonding cushioning inter/intra-ply hybrid composites. J Compos Mater 49(30):3823–3835. https://doi.org/10.1177/0021998315569750

    Article  Google Scholar 

  31. Ruosi Y, Shih-Yu H, Chen-Hung H, Chien-Teng H, Ching-Wen L, Jia-Horng L (2017) Effects of needle-punched nonwoven structure on the properties of sandwich flexible composites under static loading and low-velocity impact. Compos Mater 51(8):1045–1056. https://doi.org/10.1177/0021998316658542

    Article  Google Scholar 

  32. Liu X-D, Sheng D-K, Gao X-M, Li T-B, Yang Y-M (2013) UV-assisted surface modification of PET fiber for adhesion improvement. Appl Surf Sci 264:61–69. https://doi.org/10.1016/j.apsusc.2012.09.107

    Article  Google Scholar 

  33. Normala H, Mohd Rozi A, Wan Yunus Wan A, Azemi S, Mohammad Harris MY (2011) Puncture resistance of natural rubber latex unidirectional coated fabrics. J Ind Text 42(2):118–131. https://doi.org/10.1177/1528083711429144

    Google Scholar 

  34. Yan R, Wang R, Lou C-W, Lin J-H (2015) Low-velocity impact and static behaviors of high-resilience thermal-bonding inter/intra-ply hybrid composites. Compos Part B Eng 69:58–68. https://doi.org/10.1016/j.compositesb.2014.09.021

    Article  Google Scholar 

  35. Fu S, Yu B, Tang W, Fan M, Chen F, Fu Q (2018) Mechanical properties of polypropylene composites reinforced by hydrolyzed and microfibrillated Kevlar fibers. Compos Sci Technol. https://doi.org/10.1016/j.compscitech.2018.03.020

    Google Scholar 

  36. Woo S-C, Kim T-W (2014) High-strain-rate impact in Kevlar-woven composites and fracture analysis using acoustic emission. Compos Part B Eng 60:125–136. https://doi.org/10.1016/j.compositesb.2013.12.054

    Article  Google Scholar 

  37. McDaniel PB, Sockalingam S, Deitzel JM, Gillespie JW, Keefe M, Bogetti TA, Casem DT, Weerasooriya T (2017) The effect of fiber meso/nanostructure on the transverse compression response of ballistic fibers. Compos A Appl Sci Manuf 94:133–145. https://doi.org/10.1016/j.compositesa.2016.12.003

    Article  Google Scholar 

Download references

Acknowledgements

This research project was financially supported by the Ministry of Science and Technology of Taiwan under Contract MOST 106-2622-E-035-013-CC3 and MOST 106-2632-E-035-001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jia-Horng Lin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, MC., Lou, CW., Lin, JY. et al. Tensile strength, peel load, and static puncture resistance of laminated composites reinforced with nonwoven fabric. J Mater Sci 53, 12145–12156 (2018). https://doi.org/10.1007/s10853-018-2481-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-2481-3

Keywords

Navigation