Skip to main content
Log in

Enhanced magnetization and bias voltage-dependent dielectric properties of Sm-doped BiFeO3 multiferroic nanofibers

  • Electronic materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The simultaneous enhancement of magnetic and ferroelectric properties of one-dimensional nanostructured bismuth ferrite (BiFeO3) is highly desired due to their potential applications in nanoscale devices, such as multistate memory device and micro-magnetoelectric sensor. Sm-doped BiFeO3 nanofibers were synthesized by a sol–gel-based electrospinning process. The as-fabricated nanofibers show significantly enhanced magnetization due to the suppressed periodic spin cycloid and the uncompensated surface spins. The magnetization of Bi0.90Sm0.10FeO3 nanofibers is nearly twice as much as that of the nanoparticles at the same doping level. More importantly, Sm-doped BiFeO3 nanofibers hold the higher dielectric constant and stronger DC bias-dependent dielectric constant due to the enhanced polarization by Sm doping. Temperature-dependent dielectric constant and dissipation factor suggest that the dielectric properties of Sm-doped BiFeO3 nanofibers remain stable below 250 °C, providing a wide temperature range for applications in memory devices or sensors. The tuning of magnetic and ferroelectric properties of the Sm-doped BiFeO3 nanofibers appears to be very promising for achieving multifunctionality in a single material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Catalan G, Scott JF (2009) Physics and applications of bismuth ferrite. Adv Mater 21:2463–2485. https://doi.org/10.1002/adma.200802849

    Article  Google Scholar 

  2. Eerenstein W, Mathur ND, Scott JF (2006) Multiferroic and magnetoelectric materials. Nature 442:759–765. https://doi.org/10.1038/nature05023

    Article  Google Scholar 

  3. Cheong SW, Mostovoy M (2007) Multiferroics: a magnetic twist for ferroelectricity. Nat Mater 6:13–20. https://doi.org/10.1038/nmat1804

    Article  Google Scholar 

  4. Zhang JX, Xiang B, He Q, Seidel J, Zeches RJ, Yu P, Yang SY, Wang CH, Chu YH, Martin LW, Minor AM, Ramesh R (2011) Large field-induced strains in a lead-free piezoelectric material. Nat Nanotechnol 6:97–101. https://doi.org/10.1038/nnano.2010.265

    Google Scholar 

  5. Jiang AQ, Wang C, Jin KJ, Liu XB, Scott JF, Hwang CS, Tang TA, Bin LuH, Yang GZ (2011) A resistive memory in semiconducting BiFeO3 thin-film capacitors. Adv Mater 23:1277–1281. https://doi.org/10.1002/adma.201004317

    Article  Google Scholar 

  6. Lebeugle D, Colson D, Forget A, Viret M, Bonville P, Marucco JF, Fusil S (2007) Room-temperature coexistence of large electric polarization and magnetic order in BiFeO3 single crystals. Phys Rev B 76:024116. https://doi.org/10.1103/PhysRevB.76.024116

    Article  Google Scholar 

  7. Wang J, Neaton JB, Zheng H, Nagarajan V, Ogale SB, Liu B, Viehland D, Vaithyanathan V, Schlom DG, Waghmare UV, Spaldin NA, Rabe KM, Wuttig M, Ramesh R (2003) Epitaxial BiFeO3 multiferroic thin film heterostructures. Science 299:1719–1722. https://doi.org/10.1126/science.1080615

    Article  Google Scholar 

  8. Mukherjee A, Basu S, Green LAW, Thanh NTK, Pal M (2015) Enhanced multiferroic properties of Y and Mn codoped multiferroic BiFeO3 nanoparticles. J Mater Sci 50:1891–1900. https://doi.org/10.1007/s10853-014-8752-8

    Article  Google Scholar 

  9. Sosnowska I, Neumaier TP, Steichele E (1982) Spiral magnetic ordering in bismuth ferrite. J Phys C: Solid State Phys 15:4835–4846

    Article  Google Scholar 

  10. Khomchenko VA, Shvartsman VV, Borisov P, Kleemann W, Kiselev DA, Bdikin IK, Vieira JM, Kholkin AL (2009) Effect of Gd substitution on the crystal structure and multiferroic properties of BiFeO3. Acta Mater 57:5137–5145. https://doi.org/10.1016/j.actamat.2009.07.013

    Article  Google Scholar 

  11. Li JB, Rao GH, Xiao Y, Liang JK, Luo J, Liu GY, Chen JR (2010) Structural evolution and physical properties of Bi1−xGdxFeO3 ceramics. Acta Mater 58:3701–3708. https://doi.org/10.1016/j.actamat.2010.03.007

    Article  Google Scholar 

  12. Chen JC, Wu JM (2007) Dielectric properties and ac conductivities of dense single-phased BiFeO3 ceramics. Appl Phys Lett 91:182903. https://doi.org/10.1063/1.2798256

    Article  Google Scholar 

  13. Zhang Q, Zhu XH, Xu YH, Gao HB, Xiao YJ, Liang DY, Zhu JL, Zhu JG, Xiao DQ (2013) Effect of La3 + substitution on the phase transitions, microstructure and electrical properties of Bi1−xLaxFeO3 ceramics. J Alloys Compd 546:57–62. https://doi.org/10.1016/j.jallcom.2012.08.067

    Article  Google Scholar 

  14. Lin FT, Yu QQ, Deng LY, Zhang ZJ, He XY, Liu AY, Shi WZ (2017) Effect of La/Cr codoping on structural transformation, leakage, dielectric and magnetic properties of BiFeO3 ceramics. J Mater Sci 52:7118–7129. https://doi.org/10.1007/s10853-017-0947-3

    Article  Google Scholar 

  15. Bharathkumar S, Sakar M, Vinod RK, Balakumar S (2015) Versatility of electrospinning in the fabrication of fibrous mat and mesh nanostructures of bismuth ferrite (BiFeO3) and their magnetic and photocatalytic activities. PCCP 17:17745–17754. https://doi.org/10.1039/c5cp01640a

    Article  Google Scholar 

  16. Mohan S, Subramanian B (2013) A strategy to fabricate bismuth ferrite (BiFeO3) nanotubes from electrospun nanofibers and their solar light-driven photocatalytic properties. RSC Adv 3:23737–23744. https://doi.org/10.1039/c3ra44085k

    Article  Google Scholar 

  17. Li S, Nechache R, Harnagea C, Nikolova L, Rosei F (2012) Single-crystalline BiFeO3 nanowires and their ferroelectric behavior. Appl Phys Lett 101:192903. https://doi.org/10.1063/1.4766343

    Article  Google Scholar 

  18. Das R, Khan GG, Varma S, Mukherjee GD, Mandal K (2013) Effect of quantum confinement on optical and magnetic properties of Pr–Cr-Codoped bismuth ferrite nanowires. J Phys Chem C 117:20209–20216. https://doi.org/10.1021/jp407334d

    Article  Google Scholar 

  19. Prashanthi K, Shaibani PM, Sohrabi A, Natarajan TS, Thundat T (2012) Nanoscale magnetoelectric coupling in multiferroic BiFeO3 nanowires. Phys Status Solidi Rapid Res Lett 6:244–246. https://doi.org/10.1002/pssr.201206135

    Article  Google Scholar 

  20. Feng YN, Wang HC, Luo YD, Shen Y, Lin YH (2013) Ferromagnetic and photocatalytic behaviors observed in Ca-doped BiFeO3 nanofibres. J Appl Phys 113:146101. https://doi.org/10.1063/1.4801796

    Article  Google Scholar 

  21. Li B, Wang CQ, Liu W, Ye M, Wang N (2013) Multiferroic properties of La and Mn co-doped BiFeO3 nanofibers by sol–gel and electrospinning technique. Mater Lett 90:45–48. https://doi.org/10.1016/j.matlet.2012.09.012

    Article  Google Scholar 

  22. Fei L, Hu Y, Li X, Song R, Sun L, Huang H, Gu H, Chan HL, Wang Y (2015) Electrospun bismuth ferrite nanofibers for potential applications in ferroelectric photovoltaic devices. ACS Appl Mater Interfaces 7:3665–3670. https://doi.org/10.1021/acsami.5b00069

    Article  Google Scholar 

  23. Yang Q, Xu Q, Sobhan M, Ke QQ, Anariba F, Ong KP, Wu P (2014) Simultaneous reduction in leakage current and enhancement in magnetic moment in BiFeO3 nanofibers via optimized Sn doping. Phys Status Solidi Rapid Res Lett 8:653–657. https://doi.org/10.1002/pssr.201409043

    Article  Google Scholar 

  24. Narayanan TN, Mandal BP, Tyagi AK, Kumarasiri A, Zhan XB, Hahm MG, Anantharaman MR, Lawes G, Ajayan PM (2012) Hybrid multiferroic nanostructure with magnetic-dielectric coupling. Nano Lett 12:3025–3030. https://doi.org/10.1021/nl300849u

    Article  Google Scholar 

  25. Park TJ, Papaefthymiou GC, Viescas AJ, Moodenbaugh AR, Wong SS (2007) Size-dependent magnetic properties of single-crystalline multiferroic BiFeO3 nanoparticles. Nano Lett 7:766–772. https://doi.org/10.1021/nl063039w

    Article  Google Scholar 

  26. Tao H, Lv J, Zhang R, Xiang RP, Wu JG (2017) Lead-free rare earth-modified BiFeO3 ceramics: phase structure and electrical properties. Mater Des 120:83–89. https://doi.org/10.1016/j.matdes.2017.01.083

    Article  Google Scholar 

  27. Singh O, Agarwal A, Das A, Sanghi S, Jindal A (2017) Evolution of structural and magnetic phases in Nd doped BiFeO3 multiferroics with sintering time. J Magn Magn Mater 442:200–207. https://doi.org/10.1016/j.jmmm.2017.06.113

    Article  Google Scholar 

  28. Li ZJ, Hou ZL, Song WL, Liu XD, Wang DW, Tang J, Shao XH (2016) Mg-substitution for promoting magnetic and ferroelectric properties of BiFeO3 multiferroic nanoparticles. Mater Lett 175:207–211. https://doi.org/10.1016/j.matlet.2016.04.016

    Article  Google Scholar 

  29. Lin YH, Jiang QH, Wang Y, Nan CW, Chen L, Yu J (2007) Enhancement of ferromagnetic properties in BiFeO3 polycrystalline ceramic by La doping. Appl Phys Lett 90:172507. https://doi.org/10.1063/1.2732182

    Article  Google Scholar 

  30. Yuan GL, Or SW (2006) Enhanced piezoelectric and pyroelectric effects in single-phase multiferroic Bi1−xNdxFeO3 (x = 0-0.15) ceramics. Appl Phys Lett 88:062905. https://doi.org/10.1063/1.2169905

    Article  Google Scholar 

  31. Li ZJ, Hou ZL, Song WL, Liu XD, Cao WQ, Shao XH, Cao MS (2016) Unusual continuous dual absorption peaks in Ca-doped BiFeO3 nanostructures for broadened microwave absorption. Nanoscale 8:10415–10424. https://doi.org/10.1039/c6nr00223d

    Article  Google Scholar 

  32. Wang DW, Khesro A, Murakami S, Feteira A, Zhao QL, Reaney IM (2017) Temperature dependent, large electromechanical strain in Nd-doped BiFeO3-BaTiO3 lead-free ceramics. J Eur Ceram Soc 37:1857–1860. https://doi.org/10.1016/j.jeurceramsoc.2016.10.027

    Article  Google Scholar 

  33. Mukherjee A, Basu S, Manna PK, Yusuf SM, Pal M (2014) Enhancement of multiferroic properties of nanocrystalline BiFeO3 powder by Gd-doping. J Alloys Compd 598:142–150. https://doi.org/10.1016/j.jallcom.2014.01.245

    Article  Google Scholar 

  34. Singh SK, Tomy CV, Era T, Itoh M, Ishiwara H (2012) Improved multiferroic properties in Sm-doped BiFeO3 thin films deposited using chemical solution deposition method. J Appl Phys 111:102801. https://doi.org/10.1063/1.4714650

    Article  Google Scholar 

  35. Wang DW, Hussain F, Khesro A, Feteira A, Tian Y, Zhao QL, Reaney IM (2017) Composition and temperature dependence of structure and piezoelectricity in (1–x)(K1−yNay)NbO3−x(Bi1/2Na1/2)ZrO3 lead-free ceramics. J Am Ceram Soc 100:627–637. https://doi.org/10.1111/jace.14589

    Article  Google Scholar 

  36. Li JB, Rao GH, Liang JK, Liu YH, Luo J, Chen JR (2007) Magnetic properties of Bi(Fe1−xCrx)O3 synthesized by a combustion method. Appl Phys Lett 90:162513. https://doi.org/10.1063/1.2720349

    Article  Google Scholar 

  37. Mukherjee A, Basu S, Manna PK, Yusuf SM, Pal M (2014) Giant magnetodielectric and enhanced multiferroic properties of Sm doped bismuth ferrite nanoparticles. J Mater Chem C 2:5885–5891. https://doi.org/10.1039/c4tc00591k

    Article  Google Scholar 

  38. Perejón A, Gilgonzález E, Sánchezjiménez PE, Criado JM, Pérezmaqueda LA (2015) Structural, optical, and electrical characterization of yttrium-substituted BiFeO3 ceramics prepared by mechanical activation. Inorg Chem 54:9876–9884. https://doi.org/10.1021/acs.inorgchem.5b01654

    Article  Google Scholar 

  39. Kumar A, Varshney D (2012) Crystal structure refinement of Bi1–xNdxOFeO3 multiferroic by the Rietveld method. Ceram Int 38:3935–3942. https://doi.org/10.1016/j.ceramint.2012.01.046

    Article  Google Scholar 

  40. Singh H, Yadav KL (2015) Structural, dielectric, vibrational and magnetic properties of Sm doped BiFeO3 multiferroic ceramics prepared by a rapid liquid phase sintering method. Ceram Int 41:9285–9295. https://doi.org/10.1016/j.ceramint.2015.03.212

    Article  Google Scholar 

  41. Pattanayak S, Choudhary RNP, Das PR (2014) Effect of Sm-substitution on structural, electrical and magnetic properties of BiFeO3. Electron Mater Lett 10:165–172. https://doi.org/10.1007/s13391-013-3050-1

    Article  Google Scholar 

  42. Khomchenko VA, Paixao JA, Shvartsman VV, Borisov P, Kleemann W, Karpinsky DV, Kholkin AL (2010) Effect of Sm substitution on ferroelectric and magnetic properties of BiFeO3. Scripta Mater 62:238–241. https://doi.org/10.1016/j.scriptamat.2009.11.005

    Article  Google Scholar 

  43. Zhao JG, Zhang XH, Liu SJ, Zhang WY, Liu ZJ (2013) Effect of Ni substitution on the crystal structure and magnetic properties of BiFeO3. J Alloys Compd 557:120–123. https://doi.org/10.1016/j.jallcom.2013.01.005

    Article  Google Scholar 

  44. He P, Hou ZL, Wang CY, Li ZJ, Jing J, Bi S (2017) Mutual promotion effect of Pr and Mg co-substitution on structure and multiferroic properties of BiFeO3 ceramic. Ceram Int 43:262–267. https://doi.org/10.1016/j.ceramint.2016.09.148

    Article  Google Scholar 

  45. Jaiswal A, Das R, Vivekanand K, Abraham PM, Adyanthaya S, Poddar P (2010) Effect of reduced particle size on the magnetic properties of chemically synthesized BiFeO3 nanocrystals. J Phys Chem C 114:2108–2115. https://doi.org/10.1021/jp910745g

    Article  Google Scholar 

  46. Scott JF, Palai R, Kumar A, Singh MK, Murari NM, Karan NK, Katiyar RS (2008) New phase transitions in perovskite oxides: BiFeO(3), SrSnO(3), and Pb(Fe(2/3)W(1/3))(1/2)Ti(1/2)O(3). J Am Ceram Soc 91:1762–1768. https://doi.org/10.1111/j.1551-2916.2008.02404.x

    Article  Google Scholar 

  47. Mao C, Yan S, Cao S, Yao C, Cao F, Wang G, Dong X, Hu X, Yang C (2014) Effect of grain size on phase transition, dielectric and pyroelectric properties of BST ceramics. J Eur Ceram Soc 34:2933–2939. https://doi.org/10.1016/j.jeurceramsoc.2014.04.005

    Article  Google Scholar 

  48. Yotburut B, Thongbai P, Yamwong T, Maensiri S (2017) Synthesis and characterization of multiferroic Sm-doped BiFeO3 nanopowders and their bulk dielectric properties. J Magn Magn Mater 437:51–61. https://doi.org/10.1016/j.jmmm.2017.04.041

    Article  Google Scholar 

  49. Wu J, Zhu J, Xiao D, Zhu J, Tan J, Zhang Q (2007) Preparation and properties of highly (100)-oriented Pb(Zr0.2Ti0.8)O3 thin film prepared by rf magnetron sputtering with a PbOx buffer layer. J Appl Phys 101:094107. https://doi.org/10.1063/1.2723190

    Article  Google Scholar 

  50. Wu J, Xiao D, Wang Y, Zhu J, Zhu J, Xie R (2008) High tunability of highly (100)-oriented lead zirconate titanium thin films. J Am Ceram Soc 91:3786–3788. https://doi.org/10.1111/j.1551-2916.2008.02709.x

    Article  Google Scholar 

  51. Saha S, Sinha TP (2006) Dielectric relaxation in SrFe1/2Nb1/2O3. J Appl Phys 99:014109. https://doi.org/10.1063/1.2160712

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant No. 51302312), and BUCT Fund for Disciplines Construction (No. XK1702).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-Ling Hou.

Ethics declarations

Conflict of interest

There exist no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, W., Hou, ZL., Bi, S. et al. Enhanced magnetization and bias voltage-dependent dielectric properties of Sm-doped BiFeO3 multiferroic nanofibers. J Mater Sci 53, 10249–10260 (2018). https://doi.org/10.1007/s10853-018-2341-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-2341-1

Keywords

Navigation