Skip to main content

Advertisement

Log in

Ballistic performance of UHMWPE fabrics/EAMS hybrid panel

  • Composites
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The ballistic protection for body armor usually requires both of high strength and high energy mitigation. In this work, we introduce and evaluate a new kind of body armor, i.e. a hybrid panel of ultra-high molecular weight polyethylene (UHMWPE) fabrics and soft energy absorption materials and structures (EAMS), by combing the advantages of bullet-proof and energy absorption of the respective material structures. A combined experimental and numerical study is conducted to evaluate the ballistic performance of the UHMWPE fabrics/EAMS hybrid panel. The resulting back-face signature (BFS) values of the hybrid panel are reduced by 6–17%, compared to the pure UHMWPE fabrics panel with the same areal density. If the EAMS is simply superimposed onto the UHMWPE fabrics, the reduction of BFS can be 50% or more with respect to the pure UHMWPE one. The effects of the geometrical factors of EAMS and mass ratio of UHMWPE fabrics to EAMS on the BFS values are studied using comprehensive finite element method (FEM) analyses. The strategies for optimal design of the UHMWPE fabrics/EAMS composite armor are proposed. The results presented herein shed useful insights for the design for high performance and energy mitigating body armors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13

Similar content being viewed by others

References

  1. Egres RG, Decker MJ, Halbach CJ, Lee YS, Kirkwood JE, Kirkwood KM, Wagner NJ, Wetzel ED (2006) Stab resistance of shear thickening fluid (STF)-Kevlar composites for body armor applications. Sel Top Electr Syst 42:264. https://doi.org/10.1142/9789812772572_0034

    Google Scholar 

  2. Lee M, Yoo YH (2001) Analysis of ceramic/metal armour systems. Int J Impact Eng 25(9):819–829. https://doi.org/10.1016/S0734-743x(01)00025-2

    Article  Google Scholar 

  3. Park JL, Chi YS, Kang TJ (2013) Ballistic performance of hybrid panels composed of unidirectional/woven fabrics. Text Res J 83(5):471–486. https://doi.org/10.1177/0040517512444337

    Article  Google Scholar 

  4. Park JL, Yoon BI, Paik JG, Kang TJ (2012) Ballistic performance of p-aramid fabrics impregnated with shear thickening fluid; part II—effect of fabric count and shot location. Text Res J 82(6):542–557. https://doi.org/10.1177/0040517511420765

    Article  Google Scholar 

  5. Park JL, Yoon BI, Paik JG, Kang TJ (2012) Ballistic performance of p-aramid fabrics impregnated with shear thickening fluid; part I—effect of laminating sequence. Text Res J 82(6):527–541. https://doi.org/10.1177/0040517511420753

    Article  Google Scholar 

  6. Lee YS, Wetzel ED, Wagner NJ (2003) The ballistic impact characteristics of Kevlar (R) woven fabrics impregnated with a colloidal shear thickening fluid. J Mater Sci 38(13):2825–2833. https://doi.org/10.1023/A:1024424200221

    Article  Google Scholar 

  7. Bandaru AK, Ahmad S (2015) Effect of projectile geometry on the deformation behavior of Kevlar composite armors under ballistic impact. Int J Appl Mech. https://doi.org/10.1142/s1758825115500398

    Google Scholar 

  8. Bandaru AK, Chavan VV, Ahmad S, Alagirusamy R, Bhatnagar N (2016) Ballistic impact response of Kevlar (R) reinforced thermoplastic composite armors. Int J Impact Eng 89:1–13. https://doi.org/10.1016/j.ijimpeng.2015.10.014

    Article  Google Scholar 

  9. Bandaru AK, Vetiyatil L, Ahmad S (2015) The effect of hybridization on the ballistic impact behavior of hybrid composite armors. Compos B Eng 76:300–319. https://doi.org/10.1016/j.compositesb.2015.03.012

    Article  Google Scholar 

  10. Golovin K, Phoenix SL (2016) Effects of extreme transverse deformation on the strength of UHMWPE single filaments for ballistic applications. J Mater Sci 51(17):8075–8086. https://doi.org/10.1007/s10853-016-0077-3

    Article  Google Scholar 

  11. Prat N, Rongieras F, Sarron JC, Miras A, Voiglio E (2012) Contemporary body armor: technical data, injuries, and limits. Eur J Trauma Emerg S 38(2):95–105. https://doi.org/10.1007/s00068-012-0175-0

    Article  Google Scholar 

  12. Wang HX, Hazell PJ, Shankar K, Morozov EV, Escobedo JP, Wang CZ (2017) Effects of fabric folding and thickness on the impact behaviour of multi-ply UHMWPE woven fabrics. J Mater Sci 52(24):13977–13991. https://doi.org/10.1007/s10853-017-1482-y

    Article  Google Scholar 

  13. Liu YL, Schaedler TA, Jacobsen AJ, Lu WY, Qiao Y, Chen X (2014) Quasi-static crush behavior of hollow microtruss filled with NMF liquid. Compos Struct 115:29–40. https://doi.org/10.1016/j.compstruct.2014.03.047

    Article  Google Scholar 

  14. Zhou JL, Deng XB, Yan Y, Chen X, Liu YL (2015) Superelasticity and reversible energy absorption of polyurethane cellular structures with sand filler. Compos Struct 131:966–974. https://doi.org/10.1016/j.compstruct.2015.06.059

    Article  Google Scholar 

  15. Gibson LJAA, Ashby MF (2014) Cellular solids: structure and properties, vol 33. Cambridge University Press, Cambridge, pp 487–488

    Google Scholar 

  16. Han A, Punyamurtula VK, Kim T, Qiao Y (2008) The upper limit of energy density of nanoporous materials functionalized liquid. J Mater Eng Perform 17(3):326–329. https://doi.org/10.1007/s11665-008-9221-9

    Article  Google Scholar 

  17. Surani FB, Kong XG, Panchal DB, Qiao Y (2005) Energy absorption of a nanoporous system subjected to dynamic loadings. Appl Phys Lett. https://doi.org/10.1063/1.2106002

    Google Scholar 

  18. Zhao JB, Culligan PJ, Germaine JT, Chen X (2009) Experimental study on energy dissipation of electrolytes in nanopores. Langmuir 25(21):12687–12696. https://doi.org/10.1021/la901696t

    Article  Google Scholar 

  19. Xu BX, Qiao Y, Chen X (2014) Mitigating impact/blast energy via a novel nanofluidic energy capture mechanism. J Mech Phys Solids 62:194–208. https://doi.org/10.1016/j.jmps.2013.09.022

    Article  Google Scholar 

  20. Cannon L (2001) Behind armour blunt trauma—an emerging problem. J R Army Med Corps 147(1):87–96

    Article  Google Scholar 

  21. Luo SM, Xu C, Wang S, Wen YK (2017) Transient pressure wave in the behind armor blunt trauma: experimental and computational investigation. Comput Method Biomech 20(3):308–318. https://doi.org/10.1080/10255842.2016.1228908

    Article  Google Scholar 

  22. Wen YK, Xu C, Wang S, Batra RC (2015) Analysis of behind the armor ballistic trauma. J Mech Behav Biomed 45:11–21. https://doi.org/10.1016/j.jmbbm.2015.01.010

    Article  Google Scholar 

  23. Park JL, Chi YS, Hahn MH, Kang TJ (2012) Kinetic dissipation in ballistic tests of soft body armors. Exp Mech 52(8):1239–1250. https://doi.org/10.1007/s11340-011-9583-z

    Article  Google Scholar 

  24. Karahan M, Kus A, Eren R (2008) An investigation into ballistic performance and energy absorption capabilities of woven aramid fabrics. Int J Impact Eng 35(6):499–510. https://doi.org/10.1016/j.ijimpeng.2007.04.003

    Article  Google Scholar 

  25. Police ballistic resistance of body armor (2010) vol GA 141-2010. Ministry of Public Security of the People’s Republic of China

  26. Qingdao Xintai Technology Co. LTD. (2017) http://www.qdsinty.com/

  27. Shanghai Srui Technology Co. LTD. (2017) http://www.siruichina.com/

  28. Xi’an ChangCheng Plastics Trading Company. (2017) http://saccc.cn.21cp.com/

  29. . China South Industries Group Corporation (CSGC). (2017) http://www.chinasouth.com.cn/

  30. Chen XG, Zhou Y, Wells G (2014) Numerical and experimental investigations into ballistic performance of hybrid fabric panels. Compos B Eng 58:35–42. https://doi.org/10.1016/j.compositesb.2013.10.019

    Article  Google Scholar 

  31. Yang YF, Chen XG (2017) Investigation on energy absorption efficiency of each layer in ballistic armour panel for applications in hybrid design. Compos Struct 164:1–9. https://doi.org/10.1016/j.compstruct.2016.12.057

    Article  Google Scholar 

  32. Hernandez C, Maranon A, Ashcroft LA, Casas-Rodriguez JP (2012) Quasi-static and dynamic characterization of oil-based modeling clay and numerical simulation of drop-impact test. Proc ASME Int Mech Eng Congr Expo 8:147–152

    Google Scholar 

  33. Yeoh OH (1993) Some forms of the strain-energy function for rubber. Rubber Chem Technol 66(5):754–771. https://doi.org/10.5254/1.3538343

    Article  Google Scholar 

  34. Boyce MC, Arruda EM (2000) Constitutive models of rubber elasticity: a review. Rubber Chem Technol 73(3):504–523. https://doi.org/10.5254/1.3547602

    Article  Google Scholar 

  35. Bergstrom JS, Boyce MC (1998) Constitutive modeling of the large strain time-dependent behavior of elastomers. J Mech Phys Solids 46(5):931–954. https://doi.org/10.1016/S0022-5096(97)00075-6

    Article  Google Scholar 

  36. Ellis DH (2007) Continuum mechanics: elasticity, plasticity. CRC Press, Viscoelasticity

    Google Scholar 

  37. Kedzierski P, Poplawski A, Gieleta R, Morka A, Slawinski G (2015) Experimental and numerical investigation of fabric impact behavior. Compos B Eng 69:452–459. https://doi.org/10.1016/j.compositesb.2014.10.028

    Article  Google Scholar 

  38. Othman AR, Hassan MH (2013) Effect of different construction designs of aramid fabric on the ballistic performances. Mater Des 44:407–413. https://doi.org/10.1016/j.matdes.2012.07.061

    Article  Google Scholar 

Download references

Acknowledgements

Y.L. acknowledges the support from the National Natural Science Foundation of China (No. 11572239). X.C. acknowledges the support from the National Natural Science Foundation of China (Nos. 11372241 and 11572238), ARPA-E (DE-AR0000396) and AFOSR (FA9550-12-1-0159).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yilun Liu or Xi Chen.

Ethics declarations

Conflict of interest

No conflicts of interest exist in this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Li, M., Li, X. et al. Ballistic performance of UHMWPE fabrics/EAMS hybrid panel. J Mater Sci 53, 7357–7371 (2018). https://doi.org/10.1007/s10853-018-2055-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-2055-4

Keywords

Navigation