Skip to main content
Log in

Hexamethylenetetramine-assisted hydrothermal synthesis of octahedral nickel ferrite oxide nanocrystallines with excellent supercapacitive performance

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Octahedral nickel ferrite oxide (NiFe2O4) nanocrystals with average sizes of 81, 69, 63 and 46 nm were fabricated using hexamethylenetetramine as adscititious alkali via a facile hydrothermal route at various temperatures. The formation mechanism of octahedral nickel ferrite oxide nanocrystals was discussed in detail. Interestingly, the nanocrystalline size decreased with the increase in the hydrothermal reaction temperature. We studied the influence of hydrothermal temperatures on the evolution of the nanocrystalline and analyzed the relationship between the sizes of the nanocrystalline and their capacitive properties. Compared to the large-sized counterpart (81, 69 and 63 nm), the small-sized nanocrystals (46 nm) presented a maximum specific capacitance (562.1 F g−1) and remarkable cycling stability (80.3% capacity retention after 1500 cycles) at 4 A g−1. The excellent performance of the NiFe2O4 nanocrystals (46 nm) was mainly attributed to the unique octahedral nanostructures with a small size (fully exposing more electroactive sites and providing more sufficient expressways for rapid charge transfer) and their compositional advantages of nickel and cobalt (multiple oxidation states for redox reactions and relatively desirable electroconductivity). More remarkably, an asymmetric supercapacitor composed of NiFe2O4 (as the positive electrode) and activated carbon (as the negative electrode) displayed an ultrahigh energy density (34.91 Wh kg−1 at 1100 W kg−1) and an advanced cycling stability (84.5% capacity retention after 1000 cycles), which suggested that the decreased crystal size played a pivotal role in size-dependent capacitive performance enhancement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Wang H, Yang Y, Guo L (2017) Nature-inspired electrochemical energy-storage materials and devices. Adv Energy Mater 7:1601709

    Article  Google Scholar 

  2. Yu ZN, Tetard L, Zhai L, Thomas J (2015) Supercapacitor electrode materials: nanostructures from 0 to 3 dimensions. Energy Environ Sci 8:702–730

    Article  Google Scholar 

  3. Wang Z, Jia W, Jiang ML, Chen C, Li YD (2016) One-step accurate synthesis of shell controllable CoFe2O4 hollow microspheres as high-performance electrode materials in supercapacitor. Nano Res 9:2026–2033

    Article  Google Scholar 

  4. Bhojane P, Sharma A, Pusty M, Kumar Y, Sen S, Shirage P (2017) Synthesis of ammonia-assisted porous nickel ferrite (NiFe2O4) nanostructures as an electrode material for supercapacitors. J Nanosci Nanotechnol 17:1387–1392

    Article  Google Scholar 

  5. Pettong T, Iamprasertkun P, Krittayavathananon A, Sukha P, Sirisinudomkit P, Seubsai A, Chareonpanich M, Kongkachuichay P, Limtrakul J, Sawangphruk M (2016) High-performance asymmetric supercapacitors of MnCo2O4 nanofibers and n-doped reduced graphene oxide aerogel. ACS Appl Mater Interfaces 8:34045–34053

    Article  Google Scholar 

  6. Li L, Bi HI, Gai SL, He F, Gao P, Dai YL, Zhang XT, Yang D, Zhang ML, Yang PP (2017) Uniformly dispersed ZnFe2O4 nanoparticles on nitrogen-modified graphene for high-performance supercapacitor as electrode. Sci Rep 7:43116

    Article  Google Scholar 

  7. Gao XJ, Wang JW, Zhang D, Nie KQ, Ma YY, Zhong J, Sun XH (2017) Hollow NiFe2O4 nanospheres on carbon nanorods as a highly efficient anode material for lithium ion batteries. J Mater Chem A 5:5007–5012

    Article  Google Scholar 

  8. Javed MS, Zhang CL, Chen L, Xi Y, Hu CG (2016) Hierarchical mesoporous NiFe2O4 nanocone forest directly growing on carbon textile for high performance flexible supercapacitors. J Mater Chem A 4:8851–8859

    Article  Google Scholar 

  9. Li YL, Zhang ZQ, Pei LY, Li XG, Fan T, Ji J, Shen JF, Ye MX (2016) Multifunctional photocatalytic performances of recyclable Pd-NiFe2O4/reduced graphene oxide nanocomposites via different co-catalyst strategy. Appl Catal B Environ 190:1–11

    Article  Google Scholar 

  10. Ma YD, Dai XP, Liu MZ, Yong JX, Qiao HY, Jin AX, Li ZZ, Huang XL, Wang H, Zhang X (2016) Strongly coupled FeNi alloys/NiFe2O4@carbonitride layers-assembled microboxes for enhanced oxygen evolution reaction. ACS Appl Mater Interfaces 8:34396–34404

    Article  Google Scholar 

  11. Zhang QB, Zhao B, Wang JX, Qu C, Sun HB, Zhang K, Liu ML (2016) High-performance hybrid supercapacitors based on self-supported 3D ultrathin porous quaternary Zn–Ni–Al–Co oxide nanosheets. Nano Energy 28:475–485

    Article  Google Scholar 

  12. Sen PT, De A (2010) Electrochemical performances of poly(3,4-ethylenedioxythiophene)–NiFe2O4 nanocomposite as electrode for supercapacitor. Electrochim Acta 55:4677–4684

    Article  Google Scholar 

  13. Hareesh K, Shateesh B, Joshi RP, Dahiwale SS, Bhoraskar VN, Haram SK, Dhole SD (2016) PEDOT:PSS wrapped NiFe2O4/rGO tertiary nanocomposite for the super-capacitor applications. Electrochim Acta 201:106–116

    Article  Google Scholar 

  14. Yu ZY, Chen LF, Yu SH (2014) Growth of NiFe2O4 nanoparticles on carbon cloth for high performance flexible supercapacitors. J Mater Chem A 2:10889–10894

    Article  Google Scholar 

  15. Si WP, Yan CL, Chen Y, Oswald S, Han LY, Schmidt OG (2013) On chip, all solid-state and flexible micro-supercapacitors with high performance based on MnO x /Au multilayers. Energy Environ Sci 6:3218–3223

    Article  Google Scholar 

  16. Kondrat S, Perez CR, Presser V, Gogotsi Y, Kornyshev AA (2012) Effect of pore size and its dispersity on the energy storage in nanoporous supercapacitors. Energy Environ Sci 5:6474–6479

    Article  Google Scholar 

  17. Zhao Y, Hu LF, Zhao SY, Wu LM (2016) Preparation of MnCo2O4@Ni(OH)2 core–shell flowers for asymmetric supercapacitor materials with ultrahigh specific capacitance. Adv Funct Mater 26:4085–4093

    Article  Google Scholar 

  18. Chen H, Hu LF, Chen M, Yan Y, Wu LM (2014) Nickel–cobalt layered double hydroxide nanosheets for high-performance supercapacitor electrode materials. Adv Funct Mater 24:934–942

    Article  Google Scholar 

  19. Chen C, Yu DF, Zhao GY, Du BS, Tang W, Sun L, Sun Y, Besenbacher F, Yu M (2016) Three-dimensional scaffolding framework of porous carbon nanosheets derived from plant wastes for high-performance supercapacitors. Nano Energy 27:377–389

    Article  Google Scholar 

  20. Zhu S, Wang ZD, Huang FZ, Zhang H, Li SK (2017) Hierarchical Cu(OH)2@Ni2(OH)2CO3 core/shell nanowire arrays in situ grown on three-dimensional copper foam for high-performance solid-state supercapacitors. J Mater Chem A 5:9960–9969

    Article  Google Scholar 

  21. Xu L, Zhao Y, Lian JB, Xu YG, Bao J, Qiu JX, Xu L, Xu H, Hua MQ, Li HM (2017) Morphology controlled preparation of ZnCo2O4 nanostructures for asymmetric supercapacitor with ultrahigh energy density. Energy 123:296–304

    Article  Google Scholar 

  22. Wang Z, Zhang X, Li Y, Liu ZT, Hao ZP (2013) Synthesis of graphene–NiFe2O4 nanocomposites and their electrochemical capacitive behavior. J Mater Chem A 1:6393–6399

    Article  Google Scholar 

  23. Yang HG, Zeng HC (2004) Preparation of hollow anatase TiO2 nanospheres via Ostwald ripening. J Phys Chem B 108:3492–3495

    Article  Google Scholar 

  24. Liu B, Zeng HC (2005) Symmetric and asymmetric Ostwald ripening in the fabrication of homogeneous core–shell semiconductors. Small 1:566–571

    Article  Google Scholar 

  25. Deyoreo JJ, Gilbert PU, Sommerdijk NA, Penn RL, Whitelam S, Joester D, Zhang H, Rimer JD, Navrotsky A, Banfield JF (2015) Crystallization by particle attachment in synthetic, biogenic, and geologic environments. Science 349:a6760

    Article  Google Scholar 

  26. Li JH, Shao YL, Shi QW, Hou CY, Zhang QH, Li YG, Kaner RB, Wang HZ (2017) Calligraphy-inspired brush written foldable supercapacitors. Nano Energy 38:428–437

    Article  Google Scholar 

  27. Goldman S (2009) Generalizations of the Young–Laplace equation for the pressure of a mechanically stable gas bubble in a soft elastic material. J Chem Phys 131:184502

    Article  Google Scholar 

  28. Kim H, Seo D, Kim H, Park I, Hong J, Park K, Kang K (2012) Multicomponent effects on the crystal structures and electrochemical properties of spinel-structured M3O4 (M = Fe, Mn, Co) anodes in lithium rechargeable batteries. Chem Mater 24:720–725

    Article  Google Scholar 

  29. Panwar K, Tiwari S, Bapna K, Heda NL, Choudhary RJ, Phase DM, Ahuja BL (2017) The effect of Cr substitution on the structural, electronic and magnetic properties of pulsed laser deposited NiFe2O4 thin films. J Magn Magn Mater 421:25–30

    Article  Google Scholar 

  30. Liu G, Gao XS, Wang KF, He DY, Li JP (2016) Uniformly mesoporous NiO/NiFe2O4 biphasic nanorods as efficient oxygen evolving catalyst for water splitting. Int J Hydrog Energy 41:17976–17986

    Article  Google Scholar 

  31. Huang YP, Miao YE, Lu HY, Liu TX (2015) Hierarchical ZnCo2O4@NiCo2O4 core–sheath nanowires: bifunctionality towards high-performance supercapacitors and the oxygen-reduction reaction. Chem Eur J 21:10100–10108

    Article  Google Scholar 

  32. Zhou Z, Tian N, Li J, Broadwell I, Sun S (2011) Nanomaterials of high surface energy with exceptional properties in catalysis and energy storage. Chem Soc Rev 40:4167–4185

    Article  Google Scholar 

  33. Xing Z, Ju ZC, Yang J, Xu HY, Qian YT (2012) One-step hydrothermal synthesis of ZnFe2O4 nano-octahedrons as a high capacity anode material for Li-ion batteries. Nano Res 5:477–485

    Article  Google Scholar 

  34. Qu XF, Zhou GT, Yao QZ, Fu SQ (2009) Aspartic-acid-assisted hydrothermal growth and properties of magnetite octahedrons. J Phys Chem C 114:284–289

    Article  Google Scholar 

  35. Peng SJ, Li LL, Hu YX, Srinivasan M, Cheng F, Chen J, Ramakrishna S (2015) Fabrication of spinel one-dimensional architectures by single-spinneret electrospinning for energy storage applications. ACS Nano 9:1945–1954

    Article  Google Scholar 

  36. Li H, Wu HZ, Xiao GX (2010) Effects of synthetic conditions on particle size and magnetic properties of NiFe2O4. Powder Technol 198:157–166

    Article  Google Scholar 

  37. Gunjakar JL, More AM, Shinde VR, Lokhande CD (2008) Synthesis of nanocrystalline nickel ferrite (NiFe2O4) thin films using low temperature modified chemical method. J Alloys Compd 465:468–473

    Article  Google Scholar 

  38. Hu LL, Qu BH, Li CC, Chen YJ, Mei L, Lei D, Chen LB, Li QH, Wang TH (2013) Facile synthesis of uniform mesoporous ZnCo2O4 microspheres as a high-performance anode material for Li-ion batteries. J Mater Chem A 1:5596–5602

    Article  Google Scholar 

  39. Peng SJ, Li LL, Tan HT, Cai R, Shi WH, Li CC, Mhaisalkar SG, Srinivasan M, Ramakrishna S, Yan QY (2014) MS2 (M = Co and Ni) hollow spheres with tunable interiors for high-performance supercapacitors and photovoltaics. Adv Funct Mater 24:2155–2162

    Article  Google Scholar 

  40. Liu SD, Lee SC, Patil UM, Ray C, Sankar KV, Zhang K, Kundu A, Kang S, Park JH, Jun SC (2017) Controllable sulfuration engineered NiO nanosheets with enhanced capacitance for high rate supercapacitors. J Mater Chem A 9:4545–4549

    Google Scholar 

  41. Liu SD, Kim KH, Yun JM, Kundu A, Sankar KV, Patil UM, Ray C, Jun SC (2017) 3D yolk-shell NiGa2S4 microspheres confined with nanosheets for high performance supercapacitors. J Mater Chem A 5:6292–6298

    Article  Google Scholar 

  42. Zha DS, Xiong P, Wang X (2015) Strongly coupled manganese ferrite/carbon black/polyaniline hybrid for low-cost supercapacitors with high rate capability. Electrochim Acta 185:218–228

    Article  Google Scholar 

  43. Allagui A, Alami AH, Baranova EA, Wüthrich R (2014) Size-dependent capacitance of NiO nanoparticles synthesized with cathodic contact glow discharge electrolysis. J Power Sources 262:178–182

    Article  Google Scholar 

  44. Chen M, Wang ZL, Wang AN, Li WS, Liu X, Fu LJ, Huang W (2016) Novel self-assembled natural graphite based composite anodes with improved kinetic properties in lithium-ion batteries. J Mater Chem A 4:9865–9872

    Article  Google Scholar 

  45. Chen RN, Liu L, Zhou JS, Hou L, Gao FM (2017) High-performance nickel-cobalt-boron material for an asymmetric supercapacitor with an ultrahigh energy density. J Power Sources 341:75–82

    Article  Google Scholar 

  46. Wu D, Xiao T, Tan XY, Xiang P, Jiang LH, Kang Z, Tan P (2016) High-performance asymmetric supercapacitors based on cobalt chloride carbonate hydroxide nanowire arrays and activated carbon. Electrochim Acta 198:1–9

    Article  Google Scholar 

  47. Gao Z, Yang WL, Wang J, Song NN, Li XD (2015) Flexible all-solid-state hierarchical NiCo2O4/porous graphene paper asymmetric supercapacitors with an exceptional combination of electrochemical properties. Nano Energy 13:306–317

    Article  Google Scholar 

  48. Liang HF, Xia C, Jiang Q, Gandi AN, Schwingenschlögl U, Alshareef UN (2017) Low temperature synthesis of ternary metal phosphides using plasma for asymmetric supercapacitors. Nano Energy 35:331–340

    Article  Google Scholar 

  49. Cai WH, Lai T, Dai WL, Ye JS (2014) A facile approach to fabricate flexible all-solid-state supercapacitors based on MnFe2O4/graphene hybrids. J Power Sources 255:170–178

    Article  Google Scholar 

  50. Shanmugavani A, Selvan RK (2014) Synthesis of ZnFe2O4 nanoparticles and their asymmetric configuration with Ni(OH)2 for a pseudocapacitor. RSC Adv 4:27022–27029

    Article  Google Scholar 

  51. Sankar KV, Selvan RK, Meyrick D (2015) Electrochemical performances of CoFe2O4 nanoparticles and a rGO based asymmetric supercapacitor. RSC Adv 5:99959–99967

    Article  Google Scholar 

  52. Vadiyar MM, Bhise SC, Kolekar SS, Chang J, Ghule KS, Ghule AV (2016) Low cost flexible 3-D aligned and cross-linked efficient ZnFe2O4 nano-flakes electrode on stainless steel mesh for asymmetric supercapacitors. J Mater Chem A 4:3504–3512

    Article  Google Scholar 

  53. Raut SS, Sankapal BR (2016) First report on synthesis of ZnFe2O4 thin film using successive ionic layer adsorption and reaction: approach towards solid-state symmetric supercapacitor device. Electrochim Acta 198:203–211

    Article  Google Scholar 

  54. Li B, Fu YS, Xia H, Wang X (2014) High-performance asymmetric supercapacitors based on MnFe2O4/graphene nanocomposite as anode material. Mater Lett 122:193–196

    Article  Google Scholar 

  55. Xiong P, Hu CY, Fan Y, Zhang WY, Zhu JW, Wang X (2014) Ternary manganese ferrite/graphene/polyaniline nanostructure with enhanced electrochemical capacitance performance. J Power Sources 266:384–392

    Article  Google Scholar 

  56. Zhu MY, Zhang X, Zhou Y, Zhuo CH, Huang JC, Li SJ (2015) Facile solvothermal synthesis of porous ZnFe2O4 microspheres for capacitive pseudocapacitors. RSC Adv 5:39270–39277

    Article  Google Scholar 

  57. Hu XW, Liu S, Qu BT, You XZ (2015) Starfish-shaped Co3O4/ZnFe2O4 hollow nanocomposite: synthesis, supercapacity, and magnetic properties. ACS Appl Mater Inter 7:9972–9981

    Article  Google Scholar 

  58. Senthilkumar B, Sankar KV, Sanjeeviraja C, Selvan RK (2013) Synthesis and physico-chemical property evaluation of PANI–NiFe2O4 nanocomposite as electrodes for supercapacitors. J Alloys Compd 553:350–357

    Article  Google Scholar 

  59. Anwar S, Muthu KS, Ganesh V, Lakshminarasimhan N (2011) A comparative study of electrochemical capacitive behavior of NiFe2O4 synthesized by different routes. J Electrochem Soc 158:A976–A981

    Article  Google Scholar 

  60. Zatea MK, Shaikh SMF, Jadhav V, Waghmare SD, Ahn DY, Mane RS, Hanc SH, Joo OS (2014) Electrochemical supercapacitive properties of sprayed nickel ferrite nanostructured thin film electrode. J Nanoeng Nanomanuf 4:93–97

    Article  Google Scholar 

Download references

Acknowledgements

This work is financially supported by the Natural Science Foundation of Jiangsu Province for Youths (BK20160537), National Natural Science Foundation of China for Youths (Nos. 51603092, 21506077), the China Postdoctoral Science Foundation (Nos. 2016M591777, 2016M590415), Jiangsu University Scientific Research Funding (15JDG160), Young talent cultivation plan of Jiangsu university and a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yan Zhao or Huaming Li.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 870 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hua, M., Xu, L., Cui, F. et al. Hexamethylenetetramine-assisted hydrothermal synthesis of octahedral nickel ferrite oxide nanocrystallines with excellent supercapacitive performance. J Mater Sci 53, 7621–7636 (2018). https://doi.org/10.1007/s10853-018-2052-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-2052-7

Keywords

Navigation