Skip to main content
Log in

Chemical reduction implanted oxygen vacancy on the surface of 1D MoO3−x/g-C3N4 composite for boosted LED light-driven photoactivity

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

There is an important demand for cheap and efficient photocatalysts for dual functional applications. In the study, we report novel 1D MoO3−x/g-C3N4 composite using ethanol as a reducing agent to introduce oxygen vacancy (Ov). The presence of oxygen vacancy has been confirmed by X-ray photoelectron (XPS), electron spin resonance spectra and redox experiments. Compared with MoO3−x, g-C3N4 and fully oxidized MoO3/g-C3N4, the proposed MoO3−x/g-C3N4 composite exhibited a higher photoactivity, effectively degrading methyl orange in 100 min and completely inactivating Escherichia coli in 15 min under visible light-emitting diode irradiation. Trapping experiments demonstrated that holes (h+) and superoxide radicals (·O2−) were the major active species involved in the photocatalytic process. The enhanced photoactivity was attributed to: (1) broadening of the light absorption range associated with the oxygen vacancy, which also served as electron mediators, facilitating the separation of electron–hole pairs, and (2) the 1D nanostructure of MoO3−x, which increased the lifetime of charge carriers. The results provide evidence of the advantages of the introduction of oxygen vacancy with a view to broadening the applications of this photocatalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

References

  1. Jiang Z, Zhu C, Wan W, Qian K, Xie J (2016) Constructing graphite-like carbon nitride modified hierarchical yolk–shell TiO2 spheres for water pollution treatment and hydrogen production. J Mater Chem A 4(5):1806–1818. https://doi.org/10.1039/c5ta09919f

    Article  CAS  Google Scholar 

  2. Ding P, Di J, Chen X, Ji M, Gu K, Yin S, Liu G, Zhang F, Xia J, Li H (2018) S, N codoped graphene quantum dots embedded in (BiO)2CO3: incorporating enzymatic-like catalysis in photocatalysis. ACS Sustain Chem Eng. https://doi.org/10.1021/acssuschemeng.8b01552

    Article  Google Scholar 

  3. Xu J, Wang Z, Zhu Y (2017) Enhanced visible-light-driven photocatalytic disinfection performance and organic pollutant degradation activity of porous g-C3N4 nanosheets. ACS Appl Mater Interfaces 9(33):27727–27735. https://doi.org/10.1021/acsami.7b07657

    Article  CAS  Google Scholar 

  4. Gholizadeh Khasevani S, Gholami MR (2018) Engineering a highly dispersed core@shell structure for efficient photocatalysis: a case study of ternary novel BiOI@MIL-88A(Fe)@g-C3N4 nanocomposite. Mater Res Bull 106:93–102. https://doi.org/10.1016/j.materresbull.2018.05.024

    Article  CAS  Google Scholar 

  5. Gholizadeh Khasevani S, Mohaghegh N, Gholami MR (2017) Kinetic study of navy blue photocatalytic degradation over Ag3PO4/BiPO4@MIL-88B(Fe)@g-C3N4 core@shell nanocomposite under visible light irradiation. New J Chem 41(18):10390–10396. https://doi.org/10.1039/c7nj01968h

    Article  CAS  Google Scholar 

  6. Li Z, Lyu J, Ge M (2018) Synthesis of magnetic Cu/CuFe2O4 nanocomposite as a highly efficient Fenton-like catalyst for methylene blue degradation. J Mater Sci 53(21):15081–15095. https://doi.org/10.1007/s10853-018-2699-0

    Article  CAS  Google Scholar 

  7. Patnaik S, Sahoo DP, Parida K (2018) An overview on Ag modified g-C3N4 based nanostructured materials for energy and environmental applications. Renew Sustain Energy Rev 82:1297–1312. https://doi.org/10.1016/j.rser.2017.09.026

    Article  CAS  Google Scholar 

  8. Patnaik S, Martha S, Acharya S, Parida KM (2016) An overview of the modification of g-C3N4 with high carbon containing materials for photocatalytic applications. Inorg Chem Front 3(3):336–347. https://doi.org/10.1039/c5qi00255a

    Article  CAS  Google Scholar 

  9. Nayak S, Parida KM (2018) Dynamics of charge-transfer behavior in a plasmon-induced quasi-type-II p–n/n–n dual heterojunction in Ag@Ag3PO4/g-C3N4/NiFe LDH nanocomposites for photocatalytic Cr(VI) reduction and phenol oxidation. ACS Omega 3(7):7324–7343. https://doi.org/10.1021/acsomega.8b00847

    Article  CAS  Google Scholar 

  10. Patnaik S, Das KK, Mohanty A, Parida K (2018) Enhanced photo catalytic reduction of Cr(VI) over polymer-sensitized g-C3N4/ZnFe2O4 and its synergism with phenol oxidation under visible light irradiation. Catal Today 315:52–66. https://doi.org/10.1016/j.cattod.2018.04.008

    Article  CAS  Google Scholar 

  11. Ong WJ, Tan LL, Ng YH, Yong ST, Chai SP (2016) Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: are we a step closer to achieving sustainability? Chem Rev 116(12):7159–7329. https://doi.org/10.1021/acs.chemrev.6b00075

    Article  CAS  Google Scholar 

  12. Kumar S, Karthikeyan S, Lee A (2018) g-C3N4-based nanomaterials for visible light-driven photocatalysis. Catalysts 8(2):74. https://doi.org/10.3390/catal8020074

    Article  CAS  Google Scholar 

  13. Martín-Ramos P, Martín-Gil J, Silva MR (2017) Polymeric carbon nitride-based composites for visible-light-driven photocatalytic hydrogen generation. Hydrog Prod Technol. https://doi.org/10.1002/9781119283676.ch15

    Article  Google Scholar 

  14. Guo Q, Zhang Y, Zhang H-S, Liu Y, Zhao Y-J, Qiu J, Dong G (2017) 3D foam strutted graphene carbon nitride with highly stable optoelectronic properties. Adv Funct Mater 27(42):1703711. https://doi.org/10.1002/adfm.201703711

    Article  CAS  Google Scholar 

  15. Guo S, Tang Y, Xie Y, Tian C, Feng Q, Zhou W, Jiang B (2017) P-doped tubular g-C3N4 with surface carbon defects: universal synthesis and enhanced visible-light photocatalytic hydrogen production. Appl Catal B 218:664–671. https://doi.org/10.1016/j.apcatb.2017.07.022

    Article  CAS  Google Scholar 

  16. You Z, Su Y, Yu Y, Wang H, Qin T, Zhang F, Shen Q, Yang H (2017) Preparation of g-C3N4 nanorod/InVO4 hollow sphere composite with enhanced visible-light photocatalytic activities. Appl Catal B 213:127–135. https://doi.org/10.1016/j.apcatb.2017.05.015

    Article  CAS  Google Scholar 

  17. Sudrajat H (2018) A one-pot, solid-state route for realizing highly visible light active Na-doped g-C3N4 photocatalysts. J Solid State Chem 257:26–33. https://doi.org/10.1016/j.jssc.2017.09.024

    Article  CAS  Google Scholar 

  18. Wang Y, Zhao S, Zhang Y, Fang J, Zhou Y, Yuan S, Zhang C, Chen W (2018) One-pot synthesis of K-doped g-C3N4 nanosheets with enhanced photocatalytic hydrogen production under visible-light irradiation. Appl Surf Sci 440:258–265. https://doi.org/10.1016/j.apsusc.2018.01.091

    Article  CAS  Google Scholar 

  19. Chen W, Jiang D, Zhu M, Shi T, Li H, Wang K (2018) An effective strategy for fabricating highly dispersed nanoparticles on O-C3N4 with enhanced electrocatalytic activity and stability. J Alloys Compd 741:1203–1211. https://doi.org/10.1016/j.jallcom.2018.01.271

    Article  CAS  Google Scholar 

  20. Liu L, Xu X, Si Z, Wang Z, Ran R, He Y, Weng D (2018) Noble metal-free NiS/P-S codoped g-C3N4 photocatalysts with strong visible light absorbance and enhanced H2 evolution activity. Catal Commun 106:55–59. https://doi.org/10.1016/j.catcom.2017.12.001

    Article  CAS  Google Scholar 

  21. Ran J, Guo W, Wang H, Zhu B, Yu J, Qiao S-Z (2018) Metal-free 2D/2D phosphorene/g-C3N4 Van der Waals heterojunction for highly enhanced visible-light photocatalytic H2 production. Adv Mater 30(25):1800128. https://doi.org/10.1002/adma.201800128

    Article  CAS  Google Scholar 

  22. Chen D, Wu S, Fang J, Lu S, Zhou G, Feng W, Yang F, Chen Y, Fang Z (2018) A nanosheet-like α-Bi2O3/g-C3N4 heterostructure modified by plasmonic metallic Bi and oxygen vacancies with high photodegradation activity of organic pollutants. Sep Purif Technol 193:232–241. https://doi.org/10.1016/j.seppur.2017.11.011

    Article  CAS  Google Scholar 

  23. He Y, Zhang L, Wang X, Wu Y, Lin H, Zhao L, Weng W, Wan H, Fan M (2014) Enhanced photodegradation activity of methyl orange over Z-scheme type MoO3–g-C3N4 composite under visible light irradiation. RSC Adv 4(26):13610–13619. https://doi.org/10.1039/c4ra00693c

    Article  CAS  Google Scholar 

  24. Huang L, Xu H, Zhang R, Cheng X, Xia J, Xu Y, Li H (2013) Synthesis and characterization of g-C3N4/MoO3 photocatalyst with improved visible-light photoactivity. Appl Surf Sci 283:25–32. https://doi.org/10.1016/j.apsusc.2013.05.106

    Article  CAS  Google Scholar 

  25. Cheng H, Qian X, Kuwahara Y, Mori K, Yamashita H (2015) A plasmonic molybdenum oxide hybrid with reversible tunability for visible-light-enhanced catalytic reactions. Adv Mater 27(31):4616–4621. https://doi.org/10.1002/adma.201501172

    Article  CAS  Google Scholar 

  26. Kim H-S, Cook JB, Lin H, Ko Jesse S, Tolbert Sarah H, Ozolins V, Dunn B (2016) Oxygen vacancies enhance pseudocapacitive charge storage properties of MoO3−x. Nat Mater 16(4):454–460. https://doi.org/10.1038/nmat4810

    Article  CAS  Google Scholar 

  27. Wang G, Yang Y, Han D, Li Y (2017) Oxygen defective metal oxides for energy conversion and storage. Nano Today 13:23–39. https://doi.org/10.1016/j.nantod.2017.02.009

    Article  CAS  Google Scholar 

  28. Luo Z, Miao R, Huan TD, Mosa IM, Poyraz AS, Zhong W, Cloud JE, Kriz DA, Thanneeru S, He J, Zhang Y, Ramprasad R, Suib SL (2016) Mesoporous MoO3−x material as an efficient electrocatalyst for hydrogen evolution reactions. Adv Energy Mater 6(16):1600528. https://doi.org/10.1002/aenm.201600528

    Article  CAS  Google Scholar 

  29. Alsaif MMYA, Chrimes AF, Daeneke T, Balendhran S, Bellisario DO, Son Y, Field MR, Zhang W, Nili H, Nguyen EP, Latham K, van Embden J, Strano MS, Ou JZ, Kalantar-zadeh K (2016) High-performance field effect transistors using electronic inks of 2D molybdenum oxide nanoflakes. Adv Funct Mater 26(1):91–100. https://doi.org/10.1002/adfm.201503698

    Article  CAS  Google Scholar 

  30. Li T, Beidaghi M, Xiao X, Huang L, Hu Z, Sun W, Chen X, Gogotsi Y, Zhou J (2016) Ethanol reduced molybdenum trioxide for Li-ion capacitors. Nano Energy 26:100–107. https://doi.org/10.1016/j.nanoen.2016.05.004

    Article  CAS  Google Scholar 

  31. Cheng H, Kamegawa T, Mori K, Yamashita H (2014) Surfactant-free nonaqueous synthesis of plasmonic molybdenum oxide nanosheets with enhanced catalytic activity for hydrogen generation from ammonia borane under visible light. Angew Chem Int Ed 53(11):2910–2914. https://doi.org/10.1002/anie.201309759

    Article  CAS  Google Scholar 

  32. Zhu Y, Liu D, Meng M (2014) H2 spillover enhanced hydrogenation capability of TiO2 used for photocatalytic splitting of water: a traditional phenomenon for new applications. Chem Commun 50(45):6049–6051. https://doi.org/10.1039/c4cc01667j

    Article  CAS  Google Scholar 

  33. Xia T, Zhang Y, Murowchick J, Chen X (2014) Vacuum-treated titanium dioxide nanocrystals: optical properties, surface disorder, oxygen vacancy, and photocatalytic activities. Catal Today 225:2–9. https://doi.org/10.1016/j.cattod.2013.08.026

    Article  CAS  Google Scholar 

  34. Zhang Z, Hedhili MN, Zhu H, Wang P (2013) Electrochemical reduction induced self-doping of Ti3+ for efficient water splitting performance on TiO2 based photoelectrodes. Phys Chem Chem Phys 15(37):15637–15644. https://doi.org/10.1039/c3cp52759j

    Article  CAS  Google Scholar 

  35. Mao C, Zuo F, Hou Y, Bu X, Feng P (2014) In situ preparation of a Ti3+ self-doped TiO2 film with enhanced activity as photoanode by N2H4 reduction. Angew Chem Int Ed 53(39):10485–10489. https://doi.org/10.1002/anie.201406017

    Article  CAS  Google Scholar 

  36. Lin T, Yang C, Wang Z, Yin H, Lü X, Huang F, Lin J, Xie X, Jiang M (2014) Effective nonmetal incorporation in black titania with enhanced solar energy utilization. Energy Environ Sci 7(3):967. https://doi.org/10.1039/c3ee42708k

    Article  CAS  Google Scholar 

  37. Xing M, Fang W, Nasir M, Ma Y, Zhang J, Anpo M (2013) Self-doped Ti3+ -enhanced TiO2 nanoparticles with a high-performance photocatalysis. J Catal 297:236–243. https://doi.org/10.1016/j.jcat.2012.10.014

    Article  CAS  Google Scholar 

  38. Lu Z, Zhao X, Zhu Z, Song M, Gao N, Wang Y, Ma Z, Shi W, Yan Y, Dong H (2016) A novel hollow capsule-like recyclable functional ZnO/C/Fe3O4 endowed with three-dimensional oriented recognition ability for selectively photodegrading danofloxacin mesylate. Catal Sci Technol 6(17):6513–6524. https://doi.org/10.1039/c6cy00927a

    Article  CAS  Google Scholar 

  39. Paulose M, Shankar K, Varghese OK, Mor GK, Grimes CA (2006) Application of highly-ordered TiO2 nanotube-arrays in heterojunction dye-sensitized solar cells. J Phys D Appl Phys 39(12):2498–2503. https://doi.org/10.1088/0022-3727/39/12/005

    Article  CAS  Google Scholar 

  40. Wang J, Zhang W-D (2012) Modification of TiO2 nanorod arrays by graphite-like C3N4 with high visible light photoelectrochemical activity. Electrochim Acta 71:10–16. https://doi.org/10.1016/j.electacta.2012.03.102

    Article  CAS  Google Scholar 

  41. Ding J, Dai Z, Qin F, Zhao H, Zhao S, Chen R (2017) Z-scheme BiO1−xBr/Bi2O2CO3 photocatalyst with rich oxygen vacancy as electron mediator for highly efficient degradation of antibiotics. Appl Catal B 205:281–291. https://doi.org/10.1016/j.apcatb.2016.12.018

    Article  CAS  Google Scholar 

  42. Lu X, Xu K, Chen P, Jia K, Liu S, Wu C (2014) Facile one step method realizing scalable production of g-C3N4 nanosheets and study of their photocatalytic H2 evolution activity. J Mater Chem A 2(44):18924–18928. https://doi.org/10.1039/c4ta04487h

    Article  CAS  Google Scholar 

  43. Liang R, Cao H, Qian D (2011) MoO3 nanowires as electrochemical pseudocapacitor materials. Chem Commun 47(37):10305–10307. https://doi.org/10.1039/c1cc14030b

    Article  CAS  Google Scholar 

  44. Zhang D, Guo Y, Zhao Z (2018) Porous defect-modified graphitic carbon nitride via a facile one-step approach with significantly enhanced photocatalytic hydrogen evolution under visible light irradiation. Appl Catal B 226:1–9. https://doi.org/10.1016/j.apcatb.2017.12.044

    Article  CAS  Google Scholar 

  45. Li Y, Ruan Z, He Y, Li J, Li K, Jiang Y, Xu X, Yuan Y, Lin K (2018) In situ fabrication of hierarchically porous g-C3N4 and understanding on its enhanced photocatalytic activity based on energy absorption. Appl Catal B 236:64–75. https://doi.org/10.1016/j.apcatb.2018.04.082

    Article  CAS  Google Scholar 

  46. Hou L-P, Zhao R-X, Li X-P, Gao X-H (2018) Preparation of MoO2/g-C3N4 composites with a high surface area and its application in deep desulfurization from model oil. Appl Surf Sci 434:1200–1209. https://doi.org/10.1016/j.apsusc.2017.10.076

    Article  CAS  Google Scholar 

  47. Chen Y, Lu C, Xu L, Ma Y, Hou W, Zhu J-J (2010) Single-crystalline orthorhombic molybdenum oxide nanobelts: synthesis and photocatalytic properties. CrystEngComm 12(11):3740. https://doi.org/10.1039/c000744g

    Article  CAS  Google Scholar 

  48. Li K, Gao S, Wang Q, Xu H, Wang Z, Huang B, Dai Y, Lu J (2015) In-situ-reduced synthesis of Ti3+ self-doped TiO2/g-C3N4 heterojunctions with high photocatalytic performance under LED light irradiation. ACS Appl Mater Interfaces 7(17):9023–9030. https://doi.org/10.1021/am508505n

    Article  CAS  Google Scholar 

  49. Li Y, Zhang H, Liu P, Wang D, Li Y, Zhao H (2013) Cross-linked g-C3N4/rGO nanocomposites with tunable band structure and enhanced visible light photocatalytic activity. Small. https://doi.org/10.1002/smll.201203135

    Article  Google Scholar 

  50. Li K, Zeng X, Gao S, Ma L, Wang Q, Xu H, Wang Z, Huang B, Dai Y, Lu J (2016) Ultrasonic-assisted pyrolyzation fabrication of reduced SnO2–x/g-C3N4 heterojunctions: enhance photoelectrochemical and photocatalytic activity under visible LED light irradiation. Nano Res 9(7):1969–1982. https://doi.org/10.1007/s12274-016-1088-8

    Article  CAS  Google Scholar 

  51. Xie Z, Feng Y, Wang F, Chen D, Zhang Q, Zeng Y, Lv W, Liu G (2018) Construction of carbon dots modified MoO3/g-C3N4 Z-scheme photocatalyst with enhanced visible-light photocatalytic activity for the degradation of tetracycline. Appl Catal B 229:96–104. https://doi.org/10.1016/j.apcatb.2018.02.011

    Article  CAS  Google Scholar 

  52. Lei F, Sun Y, Liu K, Gao S, Liang L, Pan B, Xie Y (2014) Oxygen vacancies confined in ultrathin indium oxide porous sheets for promoted visible-light water splitting. J Am Chem Soc 136(19):6826–6829. https://doi.org/10.1021/ja501866r

    Article  CAS  Google Scholar 

  53. Zhang N, Li X, Ye H, Chen S, Ju H, Liu D, Lin Y, Ye W, Wang C, Xu Q, Zhu J, Song L, Jiang J, Xiong Y (2016) Oxide defect engineering enables to couple solar energy into oxygen activation. J Am Chem Soc 138(28):8928–8935. https://doi.org/10.1021/jacs.6b04629

    Article  CAS  Google Scholar 

  54. Deng Y, Tang L, Feng C, Zeng G, Chen Z, Wang J, Feng H, Peng B, Liu Y, Zhou Y (2018) Insight into the dual-channel charge-charrier transfer path for nonmetal plasmonic tungsten oxide based composites with boosted photocatalytic activity under full-spectrum light. Appl Catal B 235:225–237. https://doi.org/10.1016/j.apcatb.2018.04.075

    Article  CAS  Google Scholar 

  55. Ran J, Zhu B, Qiao SZ (2017) Phosphorene co-catalyst advancing highly efficient visible-light photocatalytic hydrogen production. Angew Chem Int Ed 56(35):10373–10377. https://doi.org/10.1002/anie.201703827

    Article  CAS  Google Scholar 

  56. Yi J, Li H, Gong Y, She X, Song Y, Xu Y, Deng J, Yuan S, Xu H, Li H (2019) Phase and interlayer effect of transition metal dichalcogenide cocatalyst toward photocatalytic hydrogen evolution: the case of MoSe2. Appl Catal B Environmental 243:330–336. https://doi.org/10.1016/j.apcatb.2018.10.054

    Article  CAS  Google Scholar 

  57. Xu H, Yi J, She X, Liu Q, Song L, Chen S, Yang Y, Song Y, Vajtai R, Lou J, Li H, Yuan S, Wu J, Ajayan PM (2018) 2D heterostructure comprised of metallic 1T-MoS2/Monolayer O-g-C3N4 towards efficient photocatalytic hydrogen evolution. Appl Catal B 220:379–385. https://doi.org/10.1016/j.apcatb.2017.08.035

    Article  CAS  Google Scholar 

  58. Li K, Huang Z, Zeng X, Huang B, Gao S, Lu J (2017) Synergetic effect of Ti3+ and oxygen doping on enhancing photoelectrochemical and photocatalytic properties of TiO2/g-C3N4 heterojunctions. ACS Appl Mater Interfaces 9(13):11577–11586. https://doi.org/10.1021/acsami.6b16191

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors genuinely appreciate the financial support of this work from the National Nature Science Foundation of China (21406094, 21476097 and 21476098), Postdoctoral Foundation of China (2015M571693) and Foundation of Jiangsu University (14JDG184). This study was supported by the high-performance computing platform of Jiangsu University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Liying Huang or Yeping Li.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1312 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, L., Zhang, F., Li, Y. et al. Chemical reduction implanted oxygen vacancy on the surface of 1D MoO3−x/g-C3N4 composite for boosted LED light-driven photoactivity. J Mater Sci 54, 5343–5358 (2019). https://doi.org/10.1007/s10853-018-03227-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-03227-4

Navigation