Skip to main content
Log in

Preparation of lamellar-stacked TS-1 and its catalytic performance for the ammoximation of butanone with H2O2

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A SiO2 particle was prepared with different alkali sources, and then lamellar-stacked TS-1 catalysts were hydrothermally synthesized using the SiO2 particle as a silica source. Powder X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared (FT-IR) spectra, nitrogen adsorption–desorption and UV–vis absorption spectra were used to characterize the TS-1 catalysts. The effect of the alkali source during the preparation of the SiO2 particle on the textural properties and catalytic performance of the TS-1 catalyst was thoroughly investigated. The TS-1 catalyst that was prepared with a SiO2 particle using tetrapropylammonium hydroxide (TPAOH) as an alkali source (TS-1-TPAOH) possessed more meso- and macro-pores and a higher framework Ti content than the catalyst that was prepared with a SiO2 particle using NH3·H2O as an alkali source (TS-1-NH3·H2O). As a result, the TS-1-TPAOH catalyst had a better catalytic performance for butanone ammoximation with H2O2 than conventional TS-1 and TS-1-NH3·H2O catalysts. Furthermore, the influences of reaction conditions, including reaction temperature, reaction time, the amount of catalyst and the molar ratio between H2O2 and butyl ketone oxime on the catalytic performance of the TS-1-TPAOH catalyst were evaluated. The unique structure of the lamellar-stacked TS-1 catalyst can effectively avoid the diffusing of large reactant molecules into zeolite channels and has potential applications in other oxidation reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Kong L, Gang L, Wang X (2004) Catal Today 93–95:341–345

    Article  Google Scholar 

  2. Xia QH, Gao Z (1997) Mater Chem Phys 47:225–230

    Article  Google Scholar 

  3. Corma A (2003) J Catal 216:298–312

    Article  Google Scholar 

  4. Cheng W, Wang X, Li G, Guo X, Zhang S (2008) J Catal 255:343–346

    Article  Google Scholar 

  5. Yang G, Wei Y, Xu S, Chen J, Li J, Liu Z, Yu J, Xu R (2013) J Phys Chem C 117:8214–8222

    Article  Google Scholar 

  6. Fan W, Duan RG, Yokoi T, Wu P, Kubota Y, Tatsumi T (2008) J Am Chem Soc 130:10150–10164

    Article  Google Scholar 

  7. Li YG, Lee YM, Porter JF (2002) J Mater Sci 37:1959–1965. https://doi.org/10.1023/A:1015234812360

    Article  Google Scholar 

  8. Serrano DP, Sanz R, Pizarro P, Moreno I, Medina S (2014) Appl Catal B Environ 146:35–42

    Article  Google Scholar 

  9. Zuo Y, Song W, Dai C, He Y, Wang M, Wang X, Guo X (2013) Appl Catal A Gen 453:272–279

    Article  Google Scholar 

  10. Liu C, Huang J, Sun D, Zhou Y, Jing X, Du M, Wang H, Li Q (2013) Appl Catal A Gen 459:1–7

    Article  Google Scholar 

  11. Tosheva L, Valtchev VP (2005) Chem Mater 17:2494–2513

    Article  Google Scholar 

  12. Yip ACK, Hu X (2009) Ind Eng Chem Res 48:8441–8450

    Article  Google Scholar 

  13. Chen L, Wang YM, He MY (2011) Mater Res Bull 46:698–701

    Article  Google Scholar 

  14. Kwon S, Schweitzer NM, Park S, Stair PC, Snurr RQ (2015) J Catal 326:107–115

    Article  Google Scholar 

  15. Huang DG, Zhang X, Liu TW, Huang C, Chen BH, Luo CW, Ruckenstein E, Chao ZS (2013) Ind Eng Chem Res 52:3762–3772

    Article  Google Scholar 

  16. Xia LZ, Li P, Guo XW, Wang XS, Xu SQ (2006) Acta Petrol Sin Petrol Proc Sec 22:72–77

    Google Scholar 

  17. Fang Y, Hu H (2007) Catal Commun 8:817–820

    Article  Google Scholar 

  18. Yue MB, Sun MN, Xie F, Ren DD (2014) Microporous Mesoporous Mater 183:177–184

    Article  Google Scholar 

  19. Moller K, Yilmaz B, Jacubinas RM, Muller U, Bein T (2011) J Am Chem Soc 133:5284–5295

    Article  Google Scholar 

  20. Kustova MY, Hasselriis P, Christensen CH (2004) Catal Lett 96:205–211

    Article  Google Scholar 

  21. Na K, Jo C, Kim J, Cho K, Jung J, Seo Y, Messinger RJ, Chmelka BF, Ryoo R (2011) Science 333:328

    Article  Google Scholar 

  22. Wang W, Li G, Liu L, Chen Y (2013) Microporous Mesoporous Mater 179:165–171

    Article  Google Scholar 

  23. Wu M, Liu X, Wang Y, Guo Y, Guo Y, Lu G (2014) J Mater Sci 49:4341–4348. https://doi.org/10.1007/s10853-014-8130-6

    Article  Google Scholar 

  24. Zhang T, Zuo Y, Liu M, Song C, Guo X (2016) ACS Omega 1:1034–1040

    Article  Google Scholar 

  25. Wang Y, Lin M, Tuel A (2007) Microporous Mesoporous Mater 102:80–85

    Article  Google Scholar 

  26. Na K, Jo C, Kim J, Ahn WS, Ryoo R (2011) ACS Catal 1:901–907

    Article  Google Scholar 

  27. Wang J, Xu L, Zhang K, Peng H, Wu H, Jiang JG, Liu Y, Wu P (2012) J Catal 288:16–23

    Article  Google Scholar 

  28. Thangaraj A, Eapen MJ, Sivasanker S, Ratnasamy P (1992) Zeolites 12:943–950

    Article  Google Scholar 

  29. Ke X, Xu L, Zeng C, Zhang L, Xu N (2007) Microporous Mesoporous Mater 106:68–75

    Article  Google Scholar 

  30. Orlov A, Zhai QZ, Klinowski J (2006) J Mater Sci 41:2187–2193. https://doi.org/10.1007/s10853-006-7184-5

    Article  Google Scholar 

  31. Kumar P, Gupta JK, Muralidhar G, Rao TSRP (1998) Stud Surf Sci Catal 113:463–472

    Article  Google Scholar 

  32. Gregg SJ, Sing KSW (1982) Adsorption surface area and porosity. Academic Press, London

    Google Scholar 

  33. Li C, Xiong G, Liu J, Ying P, Xin Q, Feng Z (2001) J Phys Chem B 105:2993–2997

    Article  Google Scholar 

  34. Guo Q, Feng Z, Li G, Fan F, Li C (2013) J Phys Chem C 117:2844–2848

    Article  Google Scholar 

  35. Jorda E, Tuel A, Teissier R, Kervennal J (1997) Zeolites 19:238–245

    Article  Google Scholar 

  36. Geobaldo F, Bordiga S, Zecchina A, Giamello E, Leofanti G, Petrini G (1992) Catal Lett 16:109–115

    Article  Google Scholar 

  37. Thangaraj A, Sivasanker S, Ratnasamy P (1991) J Catal 131:394–400

    Article  Google Scholar 

  38. Zecchina A, Spoto G, Bordiga S, Geobaldo F, Petrini G, Leofanti G, Padovan M, Mantegazza M, Roffia P (1993) Stud Surf Sci Catal 75:719–729

    Article  Google Scholar 

  39. Gao HX, Shu ZB (1998) Chin J Catal 19:329–333

    Google Scholar 

  40. Sirijaraensre J, Limtrakul J (2013) Phys Chem Chem Phys 15:18093–18100

    Article  Google Scholar 

Download references

Acknowledgements

This project was financially supported by the Fundamental Research Funds for the Central Universities (222201717003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guanzhong Lu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, W., Fu, Y., Guo, Y. et al. Preparation of lamellar-stacked TS-1 and its catalytic performance for the ammoximation of butanone with H2O2 . J Mater Sci 53, 4034–4045 (2018). https://doi.org/10.1007/s10853-017-1825-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1825-8

Keywords

Navigation