Skip to main content
Log in

Mesoporous binder-free monoliths of few-walled carbon nanotubes by spark plasma sintering

  • Ceramics
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Carbon nanotubes with few walls (FWCNTs) are prepared by catalytic chemical vapor deposition. Transmission electron microscopy investigations for each sample show the average number of walls (3, 4 and 8) as well as the internal and external diameter distributions. Binder-free FWCNT monoliths are prepared by spark plasma sintering (SPS) at temperatures in the range 1000–1600 °C. A combination of techniques including Raman spectroscopy, scanning- and transmission electron microscopy, electron microdiffraction is used to characterize the samples. Compared to the FWCNT powders, the high temperatures used for SPS favor the elimination of surface defects in CNT walls but also some limited amorphization, without dramatic damage to the CNTs. Increasing the SPS temperatures produces an increase in densification. N2 adsorption–desorption cycles revealed that the powders and monoliths show microporosity and, mostly, mesoporosity. Some monoliths show a specific surface area equal to about 500 m2/g. The 4WCNTs when consolidated into monoliths by SPS at 1000 or 1100 °C are able to retain a high amount of mesoporosity that contributes to a high porous volume of the order of 0.8 cm3/g.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. Ma RZ, Xu CL, Wei BQ, Liang J, Wu DH, Li DJ (1999) Electrical conductivity and field emission characteristics of hot-pressed sintered carbon nanotubes. Mater Res Bull 34:741–747

    Article  Google Scholar 

  2. Zhang HL, Li JF, Yao KF, Chen LD (2005) Spark plasma sintering and thermal conductivity of carbon nanotube bulk materials. J Appl Phys 97:114310-1–114310-4

    Google Scholar 

  3. Qin C, Shi X, Bai SQ, Chen LD, Wang LJ (2006) High temperature electrical and thermal properties of the bulk carbon nanotube prepared by SPS. Mater Sci Eng A 420:208–211

    Article  Google Scholar 

  4. Yang K, He J, Su Z, Reppert JB, Skove MJ, Tritt TM, Rao AM (2010) Inter-tube bonding, graphene formation and anisotropic transport properties in spark plasma sintered multi-wall carbon nanotube arrays. Carbon 48:756–762

    Article  Google Scholar 

  5. Zhang HL, Lia JF, Yao KF, Chen LD (2005) Spark plasma sintering and thermal conductivity of carbon nanotube bulk materials. J Appl Phys 97:114310-1–114310-4

    Google Scholar 

  6. Marinho B, Ghislandi M, Tkalya E, Koning CE, de With G (2012) Electrical conductivity of compacts of graphene, multi-wall carbon nanotubes, carbon black, and graphite powder. Powder Technol 221:351–358

    Article  Google Scholar 

  7. Cha SI, Kim KT, Lee KH, Mo CB, Jeong YJ, Hong SH (2008) Mechanical and electrical properties of cross-linked carbon nanotubes. Carbon 46:482–488

    Article  Google Scholar 

  8. Li JL, Bai GZ, Feng JW, Jiang W (2005) Microstructure and mechanical properties of hot-pressed carbon nanotubes compacted by spark plasma sintering. Carbon 43:2649–2653

    Article  Google Scholar 

  9. Li JL, Wang LJ, He T, Jiang W (2007) Surface graphitization and mechanical properties of hot-pressed bulk carbon nanotubes compacted by spark plasma sintering. Carbon 45:2636–2642

    Article  Google Scholar 

  10. Yamamoto G, Sato Y, Takahashi T, Omori M, Okubo A, Tohji K, Hashida T (2006) Mechanical properties of binder-free single-walled carbon nanotubes solids. Scr Mater 54:299–303

    Article  Google Scholar 

  11. Wang W, Yokoyama A, Liao S, Omori M, Zhu Y, Uo M, Akasaka T, Watari F (2008) Preparation and characteristics of a binderless carbon nanotube monolith and its biocompatibility. Mater Sci Eng C 28:1082–1086

    Article  Google Scholar 

  12. Uo M, Hasegawa T, Akasaka T, Tanaka I, Munekane F, Omori M, Kimura H, Nakatomi R, Soga K, Kogo Y, Watari F (2009) Multiwalled carbon nanotube monoliths prepared by spark plasma sintering (SPS) and their mechanical properties. Bio-Med Mater Eng 19:11–17

    Google Scholar 

  13. Sato Y, Nishizaka H, Sawano S, Yoshinaka A, Hirano K, Hashiguchi S, Arie T, Akita S, Yamamoto G, Hashida T, Kimura H, Motomiya K, Tohji K (2012) Influence of the structure of the nanotube on the mechanical properties of binder-free multi-walled carbon nanotube solids. Carbon 50:34–39

    Article  Google Scholar 

  14. Amadou J, Begin D, Nguyen P, Tessonnier JP, Dintzer T, Vanhaecke E, Ledoux MJ, Pham-Huu C (2006) Synthesis of a carbon nanotube monolith with controlled macroscopic shape. Carbon 44:2587–2592

    Article  Google Scholar 

  15. Laurent Ch, Chevallier G, Weibel A, Peigney A, Estournès C (2008) Spark plasma sintering of double-walled carbon nanotubes. Carbon 46:1812–1816

    Article  Google Scholar 

  16. Liu YF, Ba H, Nguyen DL, Ersen O, Romero T, Zafeiratos S, Begin D, Janowska I, Pham-Huu C (2013) Synthesis of porous carbon nanotubes foam composites with a high accessible surface area and tunable porosity. J Mater Chem A 1:9508–9516

    Article  Google Scholar 

  17. Chiodarelli N, Richard O, Bender H, Heyns M, De Gendt S, Groeseneken G, Vereecken PM (2012) Correlation between number of walls and diameter in multiwall carbon nanotubes grown by chemical vapor deposition. Carbon 50:1748–1752

    Article  Google Scholar 

  18. Preston C, Song D, Taillon J, Cumings J, Hu L (2016) Boron-doped few-walled carbon nanotubes: novel synthesis and properties. Nanotechnology 27:445601-1–445601-9

    Article  Google Scholar 

  19. Jeong HJ, Kim KK, Jeong SY, Park MH, Yang CW, Lee YH (2004) High-yield catalytic synthesis of thin multiwalled carbon nanotubes. J Phys Chem B 108:17695–17698

    Article  Google Scholar 

  20. Lukic B, Seo JW, Bacsa RR, Delpeux S, Béguin F, Bister G, Fonseca A, Nagy JB, Kis A, Jeney S, Kulik AJ, Forro L (2005) Catalytically grown carbon nanotubes of small diameter have a high Young’s modulus. Nano Lett 5:2074–2077

    Article  Google Scholar 

  21. Qian C, Qi H, Gao B, Cheng Y, Qiu Q, Zhou O, Liu JJ (2006) Fabrication of small diameter few-walled carbon nanotubes with enhanced field emission property. J Nanosci Nanotechnol 6:1346–1349

    Article  Google Scholar 

  22. Hou Y, Tang J, Zhang HB, Qian C, Feng YY, Liu J (2009) Functionalized few-walled carbon nanotubes for mechanical reinforcement of polymeric composites. ACS Nano 3:1057–1062

    Article  Google Scholar 

  23. Flahaut E, Peigney A, Bacsa WS, Bacsa RR, Laurent Ch (2004) CCVD synthesis of carbon nanotubes from (Mg Co, Mo)O catalysts: influence of the proportions of cobalt and molybdenum. J Mater Chem 14:646–653

    Article  Google Scholar 

  24. Flahaut E, Laurent Ch, Peigney A (2005) Catalytic CVD synthesis of double and triple-walled carbon nanotubes by the control of catalyst preparation. Carbon 43:375–383

    Article  Google Scholar 

  25. Flahaut E, Peigney A, Laurent Ch, Rousset A (2000) Synthesis of single-walled carbon nanotubes –Co–MgO composite powders and extraction of the nanotubes. J Mater Chem 10:49–52

    Article  Google Scholar 

  26. Osswald S, Flahaut E, Gogotsi Y (2005) Elimination of D-band in Raman spectra of double-wall carbon nanotubes by oxidation. Chem Phys Lett 402:422–427

    Article  Google Scholar 

  27. Bortolamiol T, Lukanov P, Galibert AM, Soula B, Lonchambon P, Datas L, Flahaut E (2014) Double-walled carbon nanotubes: quantitative purification assessment, balance between purification and degradation and solution filling as an evidence of opening. Carbon 78:79–90

    Article  Google Scholar 

  28. Guiderdoni Ch, Pavlenko E, Turq V, Weibel A, Puech P, Estournès C, Peigney A, Bacsa W, Laurent Ch (2013) The preparation of carbon nanotube (CNT)/copper composites and the effect of the number of CNT walls on their hardness, friction and wear properties. Carbon 58:185–197

    Article  Google Scholar 

  29. Flahaut E, Peigney A, Laurent C (2003) Double-walled carbon nanotubes in composite powders. J Nanosci Nanotechnol 3:151–158

    Article  Google Scholar 

  30. Peigney A, Laurent Ch, Dobigeon F, Rousset A (1997) Carbon nanotubes grown in situ by a novel catalytic method. J Mater Res 12:613–615

    Article  Google Scholar 

  31. Cordier A, de Resende VG, Weibel A, De Grave E, Peigney A, Laurent Ch (2010) Catalytic chemical vapor deposition synthesis of double-walled and few-walled carbon nanotubes by using a MoO3-supported conditioning catalyst to control the formation of iron catalytic particles within a α-Al1.8Fe0.2O3 self-supported foam. J Phys Chem C 114:19188–19193

    Article  Google Scholar 

  32. Kasperski A, Weibel A, Datas L, De Grave E, Peigney A, Laurent Ch (2015) Large-diameter single-wall carbon nanotubes formed alongside small-diameter double-walled carbon nanotubes. J Phys Chem C 119:1524–1535

    Article  Google Scholar 

  33. Zhang Q, Yu H, Liu Y, Qian W, Wang Y, Luo G, Wei F (2008) Few walled carbon nanotube production in large-scale by nano-agglomerate fluidized-bed process. NANO 3:45–50

    Article  Google Scholar 

  34. Laurent Ch, Flahaut E, Peigney A (2010) The weight and density of carbon nanotubes versus the number of walls and diameter. Carbon 48:2994–2996

    Article  Google Scholar 

  35. Kim DY, Yang CM, Park YS, Kim KK, Jeong SY, Han JH, Lee YH (2005) Characterization of thin multi-walled carbon nanotubes synthesized by catalytic chemical vapor deposition. Chem Phys Lett 413:135–141

    Article  Google Scholar 

  36. Babu DJ, Lange M, Cherkashinin G, Issanin A, Staudt R, Schneider JJ (2013) Gas adsorption studies of CO2 and N2 in spatially aligned double-walled carbon nanotube arrays. Carbon 61:616–623

    Article  Google Scholar 

  37. Yang CM, Kaneko K, Yudasaka M, Iijima S (2002) Effect of purification on pore structure of HiPco single-walled carbon nanotube aggregates. Nano Lett 2:385–388

    Article  Google Scholar 

  38. Hu YH, Ruckenstein E (2004) Pore size distribution of single-walled carbon nanotubes. Ind Eng Chem Res 43:708–711

    Article  Google Scholar 

  39. Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouquerol J, Siemieniewska T (1985) Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl Chem 57:603–619

    Article  Google Scholar 

  40. Peigney A, Laurent Ch, Flahaut E, Bacsa RR, Rousset A (2001) Specific surface area of carbon nanotubes and bundles of carbon nanotubes. Carbon 39:507–514

    Article  Google Scholar 

  41. Andrews R, Jacques D, Qian D, Dickey EC (2001) Purification and structural annealing of multiwalled carbon nanotubes at graphitization temperatures. Carbon 39:1681–1687

    Article  Google Scholar 

  42. Huang W, Wang Y, Luo G, Wei F (2003) 99.9% purity multi-walled carbon nanotubes by vacuum high-temperature annealing. Carbon 41:2585–2590

    Article  Google Scholar 

  43. Goncharov AF, Andreev VD (1991) Raman scattering in carbon films at high pressures. Sov Phys JETP 73:140–142

    Google Scholar 

  44. Aguiar AL, Capaz RB, Souza Filho AG, San-Miguel A (2012) Structural and phonon properties of bundled single- and double-wall carbon nanotubes under pressure. J Phys Chem C 116:22637–22645

    Article  Google Scholar 

  45. Puech P, Hubel H, Dunstan DJ, Bacsa RR, Laurent C, Bacsa WS (2004) Discontinuous tangential stress in doublewall carbon nanotubes. Phys Rev Lett 93:095506-1–095506-4

    Article  Google Scholar 

  46. Baaziz W, Begin-Colin S, Pichon BP, Florea I, Ersen O, Zafeiratos S, Barbosa R, Begin D, Pham-Huu C (2012) High density monodisperse cobalt nanoparticles (NPs) filling of multi-walled carbon nanotubes. Chem Mater Commun 24:1549–1551

    Article  Google Scholar 

  47. Yamamoto G, Sato Y, Takahashi T, Omori M, Hashida T, Okubo A, Tohji K (2006) Single-walled carbon nanotube-derived novel structural material. J Mater Res 21:1537–1542

    Article  Google Scholar 

  48. Du R, Zhao Q, Zhang N, Zhang J (2015) Macroscopic carbon nanotube-based 3D monoliths. Small 11:3263–3289

    Article  Google Scholar 

  49. Klepel O, Danneberg N, Dräger M, Erlitz M, Taubert M (2016) Synthesis of porous carbon monoliths using hard templates. Materials 9:1–14

    Article  Google Scholar 

  50. Gupta J, Tai NH (2016) Carbon materials as oil sorbent: a review on the synthesis and performance. J Mater Chem A 4:1550–1565

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Ch. Chauvin for CNT synthesis and test samples preparation. Electron microscopy was performed at “Centre de microcaractérisation Raimond Castaing—UMS 3623” (Toulouse) and the authors thank C. Josse and A. Descamps-Mandine for FIB preparation and help with the TEM observations. The SPS was performed at the Plateforme Nationale CNRS de Frittage-Flash (PNF2, Toulouse). This work is made in part under the contract ANR 2011-NANO-025 TRI-CO.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ch. Laurent.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Laurent, C., Dinh, T.M., Barthélémy, MC. et al. Mesoporous binder-free monoliths of few-walled carbon nanotubes by spark plasma sintering. J Mater Sci 53, 3225–3238 (2018). https://doi.org/10.1007/s10853-017-1784-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1784-0

Keywords

Navigation