Skip to main content
Log in

Structural, morphological and electrochemical properties of a polypyrrole nanohybrid produced by template-assisted fabrication

  • Polymers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Polypyrrole nanofibers/meso-tetra(4-sulfonatophenyl)porphyrin/graphene quantum dots nanohybrid (PTG) was synthesized by a facile chemical oxidative reaction using persulfate salt of cetyltrimethylammonium cation ((CTA)2S2O8) as the oxidative template. The facile formation and interactions among different constituents were established by FT-IR, UV–Vis, XRD and XPS studies. Morphological analysis was carried out by SEM and HRTEM showing polypyrrole nanofibers (PNF) to be formed with diameters in the range of 29–57 nm and HRTEM micrographs depicted the intercalation of meso-tetra(4-sulfonatophenyl)porphyrin (TSPP) and graphene quantum dots (GQDs) with PNF. The electrical conductivity of PNF and PTG was evaluated using four-probe conductivity measurement. Electrochemical activity of PNF and PTG deposited on indium tin oxide (ITO) electrode was demonstrated using cyclic voltammetry with Fe(CN) 4−/3−6 as the redox species. PTG electrode displayed an enhanced voltammetric response vis-à-vis PNF due to the synergistic effect of PNF, TSPP and GQDs resulting in an increased electroactive area beneficial for a sensing probe. Further, the PTG electrode was checked for its capability to simultaneously detect Cd2+ and Pb2+ in aqueous solution by differential pulse voltammetry (DPV).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Nalwa HS (2001) Handbook of advanced electronic and photonic materials and devices: semiconductors, vol 1. Academic Press, San Diego

    Google Scholar 

  2. Husson J, Lakard S, Monney S, Buron CC, Lakard B (2016) Elaboration and characterization of carboxylic acid-functionalized polypyrrole films. Synth Met 220:247–254

    Article  Google Scholar 

  3. Schirmer KSU, Esrafilzadeh D, Thompson BC, Quigley AF, Kapsa RMI, Wallace GG (2016) Conductive composite fibres from reduced graphene oxide and polypyrrole nanoparticles. J Mater Chem B 4:1142–1149

    Article  Google Scholar 

  4. Baleviciute I, Ratautaite V, Ramanaviciene A, Balevicius Z, Broeders J, Croux D, McDonald M, Vahidpour F, Thoelen R, Ceuninck WD, Haenen K, Nesladek M, Reza A, Ramanavicius A (2015) Evaluation of theophylline imprinted polypyrrole film. Synth Met 209:206–211

    Article  Google Scholar 

  5. Ramaprasad AT, Latha D, Rao V (2017) Synthesis and characterization of polypyrrole grafted chitin. J Phys Chem Solids 104:169–174

    Article  Google Scholar 

  6. Thakur VK, Kessler MR (2017) In: A. Tiwari, S. Valyukh (eds) Polymer nanocomposites: new advanced dielectric materials for energy storage applications, in advanced energy materials. John Wiley & Sons, Inc., Hoboken, p. 207

  7. Atri P, Tiwari DC, Sharma R (2017) Synthesis of reduced graphene oxide nanoscrolls embedded in polypyrrole matrix for supercapacitor applications. Synth Met 227:21–28

    Article  Google Scholar 

  8. Sačer D, Čapeta D, Šrut Rakić I, Peter R, Petravić M, Kraljić Roković M (2016) Tailoring polypyrrole supercapacitive properties by intercalation of graphene oxide within the layer. Electrochim Acta 193:311–320

    Article  Google Scholar 

  9. Wang L, Tricard S, Yue P, Zhao J, Fang J, Shen W (2016) Polypyrrole and graphene quantum dots @ Prussian Blue hybrid film on graphite felt electrodes: Application for amperometric determination of L-cysteine. Biosens Bioelectron 77:1112–1118

    Article  Google Scholar 

  10. Sharma A, Kumar A (2016) Study of structural and electro-catalytic behaviour of amperometric biosensor based on chitosan/polypyrrole nanotubes-gold nanoparticles nanocomposites. Synth Met 220:551–559

    Article  Google Scholar 

  11. Nia PM, Meng WP, Lorestani F, Mahmoudian MR, Alias Y (2015) Electrodeposition of copper oxide/polypyrrole/reduced graphene oxide as a nonenzymatic glucose biosensor. Sens Actuators B Chem 209:100–108

    Article  Google Scholar 

  12. Kaushik A, Kumar R, Arya SK, Nair M, Malhotra BD, Bhansali S (2015) Organic-inorganic hybrid nanocomposite-based gas sensors for environmental monitoring. Chem Rev 115:4571–4606

    Article  Google Scholar 

  13. Mahmoudian MR, Basirun WJ, Alias Y (2016) A sensitive electrochemical Hg2+ ions sensor based on polypyrrole coated nanospherical platinum. RSC Adv 6:36459–36466

    Article  Google Scholar 

  14. Sharma M, Waterhouse GIN, Loader SWC, Garg S, Svirskis D (2013) High surface area polypyrrole scaffolds for tunable drug delivery. Int J Pharm 443:163–168

    Article  Google Scholar 

  15. Wang W-Y, Ting P-N, Lo C-S, Lin J-Y (2014) Pulse-reversal electropolymerization of polypyrrole on functionalized carbon nanotubes as composite counter electrodes in dye-sensitized solar cells. Electrochim Acta 137:721–727

    Article  Google Scholar 

  16. Kumar GG, Kirubaharan CJ, Udhayakumar S, Ramachandran K, Karthikeyan C, Renganathan R, Nahm KS (2014) Synthesis, structural, and morphological characterizations of reduced graphene oxide-supported polypyrrole anode catalysts for improved microbial fuel cell performances. ACS Sustain Chem Eng 2:2283–2290

    Article  Google Scholar 

  17. Ekramul Mahmud HNM, Huq AKO, Yahya RB (2016) The removal of heavy metal ions from wastewater/aqueous solution using polypyrrole-based adsorbents: a review. RSC Adv 6:14778–14791

    Article  Google Scholar 

  18. Bora C, Sharma J, Dolui SK (2014) Polypyrrole/Sulfonated graphene composite as electrode material for supercapacitor. J Phys Chem C 118:29688–29694

    Article  Google Scholar 

  19. Porras-Gutiérrez AG, Frontana-Uribe BA, Gutiérrez-Granados S, Griveau S, Bedioui F (2013) In situ characterization by cyclic voltammetry and conductance of composites based on polypyrrole, multi-walled carbon nanotubes and cobalt phthalocyanine. Electrochim Acta 89:840–847

    Article  Google Scholar 

  20. Patois T, Sanchez JB, Berger F, Fievet P, Segut O, Moutarlier V, Bouvet M, Lakard B (2013) Elaboration of ammonia gas sensors based on electrodeposited polypyrrole-cobalt phthalocyanine hybrid films. Talanta 117:45–54

    Article  Google Scholar 

  21. Hu P, Han L, Dong S (2014) A facile one-pot method to synthesize a polypyrrole/hemin nanocomposite and its application in biosensor, dye removal, and photothermal therapy. ACS Appl Mater Interfaces 6:500–506

    Article  Google Scholar 

  22. Paul S, Amalraj F, Radhakrishnan S (2009) CO sensor based on polypyrrole functionalized with iron porphyrin. Synth Met 159:1019–1023

    Article  Google Scholar 

  23. Zhang W, Chen J, Wagner P, Swiegers GF, Wallace GG (2008) Polypyrrole/Co-tetraphenylporphyrin modified carbon fibre paper as a fuel cell electrocatalyst of oxygen reduction. Electrochem Commun 10:519–522

    Article  Google Scholar 

  24. Diab N, Oni J, Schulte A, Radtke I, Blochl A, Schuhmann W (2003) Electropolymerized manganese porphyrin/polypyrrole films as catalytic surfaces for the oxidation of nitric oxide. Talanta 61:43–51

    Article  Google Scholar 

  25. De Gregori I, Carrier M, Deronzier A, Moutet JC, Bedioui F, Devynck J (1992) Incorporation of anionic cobalt porphyrin by anion exchange into polypyrrole films containing alkylammonium groups. J Chem Soc Faraday Trans 88:1567–1572

    Article  Google Scholar 

  26. Zhou Q, Li CM, Li J, Cui X, Gervasio D (2007) Template-synthesized cobalt Porphyrin/Polypyrrole nanocomposite and its electrocatalysis for oxygen reduction in neutral medium. J Phys Chem C 111:11216–11222

    Article  Google Scholar 

  27. Makiura R, Usui R, Pohl E, Prassides K (2014) Porphyrin-based coordination polymer composed of layered pillarless two-dimensional networks. Chem Lett 43:1161–1163

    Article  Google Scholar 

  28. Fan S, Zhu Y, Liu R, Zhang H, Wang Z-S, Wu H (2016) A porphyrin derivative for the fabrication of highly stable and sensitive electrochemical sensor and its analytical applications. Sens Actuators B Chem 233:206–213

    Article  Google Scholar 

  29. Buntem R, Intasiri A, Lueangchaichaweng W (2010) Facile synthesis of silica monolith doped with meso-tetra(p-carboxyphenyl)-porphyrin as a novel metal ion sensor. J Coll Interface Sci 347:8–14

    Article  Google Scholar 

  30. Zhang J, Devaramani S, Shan D, Lu X (2016) Electrochemiluminescence behavior of meso-tetra(4-sulfonatophenyl)porphyrin in aqueous medium: its application for highly selective sensing of nanomolar Cu2+. Anal Bioanal Chem 408:7155–7163

    Article  Google Scholar 

  31. Ting SL, Ee SJ, Ananthanarayanan A, Leong KC, Chen P (2015) Graphene quantum dots functionalized gold nanoparticles for sensitive electrochemical detection of heavy metal ions. Electrochim Acta 172:7–11

    Article  Google Scholar 

  32. Qian ZS, Shan XY, Chai LJ, Chen JR, Feng H (2015) A fluorescent nanosensor based on graphene quantum dots–aptamer probe and graphene oxide platform for detection of lead (II) ion. Biosens Bioelectron 68:225–231

    Article  Google Scholar 

  33. Chua CK, Sofer Z, Simek P, Jankovský O, Klímová K, Bakardjieva S, Kučková SH, Pumera M (2015) Synthesis of strongly fluorescent graphene quantum dots by cage-opening buckminsterfullerene. ACS Nano 9:2548–2555

    Article  Google Scholar 

  34. Chen L, Guo CX, Zhang Q, Lei Y, Xie J, Ee S, Guai G, Song Q, Li CM (2013) Graphene quantum-dot-doped polypyrrole counter electrode for high-performance dye-sensitized solar cells. ACS Appl Mater Interfaces 5:2047–2052

    Article  Google Scholar 

  35. Huang H, Chen T, Liu X, Ma H (2014) Ultrasensitive and simultaneous detection of heavy metal ions based on three-dimensional graphene-carbon nanotubes hybrid electrode materials. Anal Chim Acta 852:45–54

    Article  Google Scholar 

  36. Liu H, Zhou X, Shen J, Xing D (2017) Sensitive detection of Hg2+ with switchable electrochemiluminescence luminophore and disposable bipolar electrode. ChemElectroChem 4:1681–1685

    Article  Google Scholar 

  37. Gautam RK, Sharma SK, Mahiya S, Chattopadhyaya MC (2015) Contamination of heavy metals in aquatic media: transport, toxity and technologies for remediation, in: heavy metals in water: presence, removal and safety. The Royal Soc Chem, 1–24

  38. W. H. Organization (2011) Guidelines for drinking-water quality, 4th edn. World Health Organization, Geneva

    Google Scholar 

  39. Arulraj AD, Devasenathipathy R, Chen S-M, Vasantha VS, Wang S-F (2016) Femtomolar detection of mercuric ions using polypyrrole, pectin and graphene nanocomposites modified electrode. J Coll Interface Sci 483:268–274

    Article  Google Scholar 

  40. Zhang X, Zhang J, Liu Z, Robinson C (2004) Inorganic/organic mesostructure directed synthesis of wire/ribbon-like polypyrrole nanostructures. Chem Commun 16:1852–1853

    Article  Google Scholar 

  41. Dong Y, Shao J, Chen C, Li H, Wang R, Chi Y, Lin X, Chen G (2012) Blue luminescent graphene quantum dots and graphene oxide prepared by tuning the carbonization degree of citric acid. Carbon 50:4738–4743

    Article  Google Scholar 

  42. Plausinaitis D, Sinkevicius L, Mikoliunaite L, Plausinaitiene V, Ramanaviciene A, Ramanavicius A (2017) Electrochemical polypyrrole formation from pyrrole ‘adlayer’. Phys Chem Chem Phys 19:1029–1038

    Article  Google Scholar 

  43. Leonavicius K, Ramanaviciene A, Ramanavicius A (2011) Polymerization model for hydrogen peroxide initiated synthesis of polypyrrole nanoparticles. Langmuir 27:10970–10976

    Article  Google Scholar 

  44. Carmona T, Pineiro M, Monteiro CJP, Pereira MM, Valente AJM (2015) Interactions between cationic surfactants and 5,10,15,20-tetrakis(4-sulfonatophenyl)porphyrin tetrasodium salt as seen by electric conductometry and spectroscopic techniques. Coll Surf A Physicochem Eng Asp 481:288–296

    Article  Google Scholar 

  45. Shi LY, Wang JQ, Gao L, Huang L, Zhu J, Wang Y, Fan X, Yu T, Zhu M, Li Z, Zou Z (2007) Preparation of mesostructured lamellar zirconia. Mater Manuf Process 22:705–709

    Article  Google Scholar 

  46. Cai Y, Qin Z, Chen L (2011) Effect of electrolytes on electrochemical properties of graphene sheet covered with polypyrrole thin layer. Prog Nat Sci Mater Int 21:460–466

    Article  Google Scholar 

  47. Synytsya A, Synytsya A, Blafková P, Ederová J, Spěvaček J, Slepička P, Král V, Volka K (2009) pH-controlled self-assembling of meso-tetrakis(4-sulfonatophenyl)porphyrin-chitosan complexes. Biomacromolecules 10:1067–1076

    Article  Google Scholar 

  48. Guého CT, Halma M, Charradi K, Forano C, Mousty C (2011) Structural and electrochemical characterization of metallo-porphyrins intercalated into ZnCr-layered double hydroxides: some evidence of dimer formation. New J Chem 35:1898–1905

    Article  Google Scholar 

  49. Khalid M, Acuña JJS, Tumelero MA, Fischer JA, Zoldan VC, Pasa AA (2012) Sulfonated porphyrin doped polyaniline nanotubes and nanofibers: synthesis and characterization. J Mater Chem 22:11340–11346

    Article  Google Scholar 

  50. Hayashi K, Nakamura M, Ishimura K (2012) Silica-porphyrin hybrid nanotubes for in vivo cell tracking by near-infrared fluorescence imaging. Chem Commun 48:3830–3832

    Article  Google Scholar 

  51. Singh A, Salmi Z, Jha P, Joshi N, Kumar A, Decorse P, Lecoq H, Lau-Truong S, Aswal DK, Gupta SK, Chehimi MM (2013) One step synthesis of highly ordered free standing flexible polypyrrole-silver nanocomposite films at air-water interface by photopolymerization. RSC Adv 3:13329–13336

    Article  Google Scholar 

  52. Wang X, Wang T, Liu D, Guo J, Liu P (2016) Synthesis and electrochemical performance of CeO2/PPy nanocomposites: interfacial effect. Ind Eng Chem Res 55:866–874

    Article  Google Scholar 

  53. Biswas S, Ahn H-Y, Bondar MV, Belfield KD (2012) Two-photon absorption enhancement of polymer-templated porphyrin-based J-aggregates. Langmuir 28:1515–1522

    Article  Google Scholar 

  54. Snitka V, Rackaitis M, Rodaite R (2005) Assemblies of TPPS4 porphyrin investigated by TEM, SPM and UV–vis spectroscopy. Sens Actuators B Chem 109:159–166

    Article  Google Scholar 

  55. Liu A, Li C, Bai H, Shi G (2010) Electrochemical deposition of polypyrrole/sulfonated graphene composite films. J Phys Chem C 114:22783–22789

    Article  Google Scholar 

  56. Fu Y, Su Y-S, Manthiram A (2012) Sulfur-polypyrrole composite cathodes for lithium-sulfur batteries. J Electrochem Soc 159:A1420–A1424

    Article  Google Scholar 

  57. Bruck AM, Gannett CN, Bock DC, Smith PF, Marschilok AC, Takeuchi KJ, Takeuchi ES (2017) The electrochemistry of Fe3O4/polypyrrole composite electrodes in lithium-ion cells: the role of polypyrrole in capacity retention. J Electrochem Soc 164:A6260–A6267

    Article  Google Scholar 

  58. Tabačiarová J, Mičušík M, Fedorko P, Omastová M (2015) Study of polypyrrole aging by XPS, FTIR and conductivity measurements. Polym Degrad Stab 120:392–401

    Article  Google Scholar 

  59. Kumar GG, Kim P, Kim AR, Nahm KS, Elizabeth RN (2009) Elizabeth, Structural, thermal and ion transport studies of different particle size nanocomposite fillers incorporated PVdF-HFP hybrid membranes. Mater Chem Phys 115:40–46

    Article  Google Scholar 

  60. Yu C, Ma P, Zhou X, Wang A, Qian T, Wu S, Chen Q (2014) All-Solid-State flexible supercapacitors based on highly dispersed polypyrrole nanowire and reduced graphene oxide composites. ACS Appl Mater Interfaces 6:17937–17943

    Article  Google Scholar 

Download references

Acknowledgements

The author (Shruti Peshoria) would like to express gratitude to Guru Gobind Singh Indraprastha University for providing financial support in terms of Indraprastha Research Fellowship (IPRF) with award number GGSIPU/DRC/Ph.D/Adm./2014/1634 and Ms. Neeru Sharma for administrative services. Also, the authors would like to thank Jamia Millia Islamia, New Delhi, for HRTEM and XRD facility and MNIT (Jaipur) for XPS facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anudeep Kumar Narula.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10853_2017_1769_MOESM1_ESM.doc

Supplementary data associated with this article including digital photographs of preparation of GQDs, FT-IR and UV–Vis spectra of TSPP and GQDs can be found in the online version. (DOC 2538 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peshoria, S., Narula, A.K. Structural, morphological and electrochemical properties of a polypyrrole nanohybrid produced by template-assisted fabrication. J Mater Sci 53, 3876–3888 (2018). https://doi.org/10.1007/s10853-017-1769-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1769-z

Keywords

Navigation