Skip to main content
Log in

Electrochemiluminescence behavior of meso-tetra(4-sulfonatophenyl)porphyrin in aqueous medium: its application for highly selective sensing of nanomolar Cu2+

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The cathodic electrochemiluminescence (ECL) behavior of meso-tetra(4-sulfonatophenyl)porphyrin (TSPP) with potassium peroxydisulfate (K2S2O8) as the coreactant in aqueous solution with strong and stable emission was exploited to determine Cu2+ down to nanomolar concentration. Two possible reaction mechanisms have been proposed to understand the generation of ECL by the TSPP/K2S2O8 system. The effects of the concentration of TSPP and K2S2O8, pH of the medium, and scan rate on the ECL intensity were studied in detail. The ECL intensity was efficiently quenched by trace amounts of Cu2+. This phenomenon was used to develop a new method, which can offer rapid, reliable, and selective detection of Cu2+. Under the optimum conditions, plots of the ECL of the TSPP/K2S2O8 system versus the concentration of Cu2+ are linear in the range of 5 to 160 nM with a detection limit of 1.56 nM (S/N = 3). The proposed ECL sensor was successfully applied for analysis of tap and river water samples. It is anticipated that TSPP could be a new class of promising luminescent agent for ECL sensors.

A two-step cathodic elelctrochemiluminescence (ECL) behavior of TSPP/K2S2O8 system in the aqueous solution and Cu2+ determination using the same

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bard AJ. Electrogenerated chemiluminescence. New York: Dekker; 2004.

    Book  Google Scholar 

  2. Richter MM. Electrochemiluminescence (ECL). Chem Rev. 2004;104(6):3003–36.

    Article  CAS  Google Scholar 

  3. Dini D. Electrochemiluminescence from organic emitters. Chem Mater. 2005;17(8):1933–45.

    Article  CAS  Google Scholar 

  4. Yin XB, Dong S, Wang E. Analytical applications of the electrochemiluminescence of tris(2,2′-bipyridyl)ruthenium and its derivatives. TrAC Trends Anal Chem. 2004;23(6):432–41.

    Article  CAS  Google Scholar 

  5. Gerardi RD, Barnett NW, Lewis SW. Analytical applications of tris(2,2′-bipyridyl)ruthenium (III) as a chemiluminescent reagent. Anal Chim Acta. 1999;378(1):1–41.

    CAS  Google Scholar 

  6. Miao W. Electrogenerated chemiluminescence and its biorelated applications. Chem Rev. 2008;108(7):2506–53.

    Article  CAS  Google Scholar 

  7. Bertolino C, MacSweeney M, Tobin J, et al. A monolithic silicon based integrated signal generation and detection system for monitoring DNA hybridisation. Biosens Bioelectron. 2005;21(4):565–73.

    Article  CAS  Google Scholar 

  8. Ding C, Ge Y, Zhang S. Electrochemical and electrochemiluminescence determination of cancer cells based on aptamers and magnetic beads. Chem Eur J. 2010;16(35):10707–14.

    Article  CAS  Google Scholar 

  9. Rivera VR, Gamez FJ, Keener WK, et al. Rapid detection of Clostridium botulinum toxins A, B, E, and F in clinical samples, selected food matrices, and buffer using paramagnetic bead-based electrochemiluminescence detection. Anal Biochem. 2006;353(2):248–56.

    Article  CAS  Google Scholar 

  10. Huang B, Zhou X, Xue Z, et al. Quenching of the electrochemiluminescence of Ru(bpy)3 2+/TPA by malachite green and crystal violet. Talanta. 2013;106:174–80.

    Article  CAS  Google Scholar 

  11. Zhang M, Ge L, Ge S, et al. Three-dimensional paper-based electrochemiluminescence device for simultaneous detection of Pb2+ and Hg2+ based on potential-control technique. Biosens Bioelectron. 2013;41:544–50.

    Article  CAS  Google Scholar 

  12. Su Q, Xing D, Zhou X. Magnetic beads based rolling circle amplification- electrochemiluminescence assay for highly sensitive detection of point mutation. Biosens Bioelectron. 2010;25(7):1615–21.

    Article  CAS  Google Scholar 

  13. Chen FC, Ho JH, Chen CY, et al. Electrogenerated chemiluminescence of sterically hindered porphyrins in aqueous media. J Electroanal Chem. 2001;499(1):17–23.

    Article  CAS  Google Scholar 

  14. Venkataramanan NS, Kuppuraj G, Rajagopal S. Metal–salen complexes as efficient catalysts for the oxygenation of heteroatom containing organic compounds—synthetic and mechanistic aspects. Coord Chem Rev. 2005;249(11):1249–68.

    Article  CAS  Google Scholar 

  15. Dunbar ADF, Brittle S, Richardson TH, et al. Detection of volatile organic compounds using porphyrin derivatives. J Phys Chem B. 2010;114(36):11697–702.

    Article  CAS  Google Scholar 

  16. Brun AM, Harriman A. Energy-and electron-transfer processes involving palladium porphyrins bound to DNA. J Am Chem Soc. 1994;116(23):10383–93.

    Article  CAS  Google Scholar 

  17. Wang W, Shan D, Yang Y, et al. A novel method for dynamic investigations of photoinduced electron transport using functionalized-porphyrin at ITO/liquid interface. Chem Commun. 2011;47(24):6975–7.

    Article  CAS  Google Scholar 

  18. Lu X, Zhang L, Li M, et al. Electrochemical characterization of self-assembled thiol-porphyrin monolayers on gold electrodes by SECM. ChemPhysChem. 2006;7(4):854–62.

    Article  CAS  Google Scholar 

  19. Aviv I, Gross Z. Iron corroles and porphyrins as very efficient and highly selective catalysts for the reactions of α-diazo esters with amines. Synlett. 2006;6:951–3.

    Google Scholar 

  20. Hod I, Sampson MD, Deria P, et al. Fe-porphyrin-based metal–organic framework films as high-surface concentration, heterogeneous catalysts for electrochemical reduction of CO2. ACS Catal. 2015;5(11):6302–9.

    Article  CAS  Google Scholar 

  21. Lin S, Diercks CS, Zhang YB, et al. Covalent organic frameworks comprising cobalt porphyrins for catalytic CO2 reduction in water. Science. 2015;349(6253):1208–13.

    Article  CAS  Google Scholar 

  22. Constantin C, Neagu M. Fluorescent porphyrin with an increased uptake in peripheral blood cell subpopulations from colon cancer patients. Med Chem. 2015;11(4):354–63.

    Article  CAS  Google Scholar 

  23. Tokel NE, Keszthelyi CP, Bard AJ. Electrogenerated chemiluminescence. X. α, β, γ, δ-Tetraphenylporphine chemiluminescence. J Am Chem Soc. 1972;94(14):4872–7.

    Article  CAS  Google Scholar 

  24. Tokel-Takvoryan NE, Bard AJ. Electrogenerated chemiluminescence. XVI. ECL of palladium and platinum α, β, γ, δ-tetraphenylporphyrin complexes. Chem Phys Lett. 1974;25(2):235–8.

    Article  CAS  Google Scholar 

  25. Vogler A, Kunkely H. Electrochemiluminescence of tetrakis(diphosphonato)diplatinate(II). Angew Chem Int Ed Engl. 1984;23(4):316–7.

    Article  Google Scholar 

  26. Bolin A, Richter MM. Coreactant electrogenerated chemiluminescence of ruthenium porphyrins. Inorg Chim Acta. 2009;362(6):1974–6.

    Article  CAS  Google Scholar 

  27. Wu L, Wang J, Feng L, et al. Label-free ultrasensitive detection of human telomerase activity using porphyrin-functionalized graphene and electrochemiluminescence technique. Adv Mater. 2012;24(18):2447–52.

    Article  CAS  Google Scholar 

  28. Zhang GY, Deng SY, Zhang XJ, et al. Cathodic electrochemiluminescence of singlet oxygen induced by the electroactive zinc porphyrin in aqueous media. Electrochim Acta. 2016;190:64–8.

    Article  CAS  Google Scholar 

  29. Xu N, Lei J, Wang Q, et al. Dendritic DNA–porphyrin as mimetic enzyme for amplified fluorescent detection of DNA. Talanta. 2016;150:661–5.

    Article  CAS  Google Scholar 

  30. Long TR, Richter MM. Electrogenerated chemiluminescence of the platinum (II) octaethylporphyrin/tri-n-propylamine system. Inorg Chim Acta. 2005;358(6):2141–5.

    Article  CAS  Google Scholar 

  31. Luo D, Huang B, Wang L, et al. Cathodic electrochemiluminescence of meso-tetra(4-carboxyphenyl)porphyrin/potassium peroxydisulfate system in aqueous media. Electrochim Acta. 2015;151:42–9.

    Article  CAS  Google Scholar 

  32. Cheng C, Huang Y, Tian X, et al. Electrogenerated chemiluminescence behavior of graphite-like carbon nitride and its application in selective sensing Cu2+. Anal Chem. 2012;84(11):4754–9.

    Article  CAS  Google Scholar 

  33. Tian J, Liu Q, Asiri AM, et al. Ultrathin graphitic carbon nitride nanosheet: a highly efficient fluorosensor for rapid, ultrasensitive detection of Cu2+. Anal Chem. 2013;85(11):5595–9.

    Article  CAS  Google Scholar 

  34. Cheng N, Jiang P, Liu Q, et al. Graphitic carbon nitride nanosheets: one-step, high-yield synthesis and application for Cu2+ detection. Analyst. 2014;139(20):5065–8.

    Article  CAS  Google Scholar 

  35. Lindsey JS, Schreiman IC, Hsu HC, et al. Rothemund and Adler-Longo reactions revisited: synthesis of tetraphenylporphyrins under equilibrium conditions. J Org Chem. 1987;52(5):827–36.

    Article  CAS  Google Scholar 

  36. Lindsey JS, MacCrum KA, Tyhonas JS, et al. Investigation of a synthesis of meso-porphyrins employing high concentration conditions and an electron transport chain for aerobic oxidation. J Org Chem. 1994;59(3):579–87.

    Article  CAS  Google Scholar 

  37. Lu X, Wang H, Du J, et al. Self-quenching in the electrochemiluminescence of tris(2,2′-bipyridyl) ruthenium(II) using metabolites of catecholamines as coreactants. Analyst. 2012;137(6):1416–20.

    Article  CAS  Google Scholar 

  38. He Q. Effect of the local environment on the structure and reactivity of metalloporphyrins. Science: Department of Chemistry. Ph.d. Thesis. 2010.

  39. Vinyard DJ, Swavey S, Richter MM. Photoluminescence and electrogenerated chemiluminescence of a bis(bipyridyl)ruthenium (II)–porphyrin complex. Inorg Chim Acta. 2007;360(5):1529–34.

    Article  CAS  Google Scholar 

  40. Wang Y, Lu J, Tang L, et al. Graphene oxide amplified electrogenerated chemiluminescence of quantum dots and its selective sensing for glutathione from thiol-containing compounds. Anal Chem. 2009;81(23):9710–5.

    Article  CAS  Google Scholar 

  41. Chen Y, Shen Y, Sun D, et al. Fabrication of a dispersible graphene/gold nanoclusters hybrid and its potential application in electrogenerated chemiluminescence. Chem Commun. 2011;47(42):11733–5.

    Article  CAS  Google Scholar 

  42. White HS, Bard AJ. Electrogenerated chemiluminescence. 41. Electrogenerated chemiluminescence and chemiluminescence of the Ru (2,21-bpy) 3 2+-S2O8 2−system in acetonitrile-water solutions. J Am Chem Soc. 1982;104(25):6891–5.

    Article  CAS  Google Scholar 

  43. Liang G, Shen L, Zou G, et al. Efficient near-infrared electrochemiluminescence from CdTe nanocrystals with low triggering potential and ultrasensitive sensing ability. Chem Eur J. 2011;17(37):10213–5.

    Article  CAS  Google Scholar 

  44. Bae Y, Myung N, Bard AJ. Electrochemistry and electrogenerated chemiluminescence of CdTe nanoparticles. Nano Lett. 2004;4(6):1153–61.

    Article  CAS  Google Scholar 

  45. Yao W, Wang L, Wang H, et al. Cathodic electrochemiluminescence behavior of norfloxacin/peroxydisulfate system in purely aqueous solution. Electrochim Acta. 2008;54(2):733–7.

    Article  CAS  Google Scholar 

  46. Yu S, Zhou Q, Zhao XM, et al. Comparison of the antiviral effects of different nucleos(t)ide analogues in Chinese patients with chronic hepatitis B: a head-to-head study. Saudi J Gastroenterol. 2014;20(6):350.

    Article  Google Scholar 

  47. Chen Z, Wong KMC, Kwok ECH, et al. Electrogenerated chemiluminescence of platinum(II) alkynyl terpyridine complex with peroxydisulfate as coreactant. Inorg Chem. 2011;50(6):2125–32.

    Article  CAS  Google Scholar 

  48. Hua L, Han H, Chen H. Enhanced electrochemiluminescence of CdTe quantum dots with carbon nanotube film and its sensing of methimazole. Electrochim Acta. 2009;54(5):1389–94.

    Article  CAS  Google Scholar 

  49. Dai H, Chi Y, Wu X, et al. Biocompatible electrochemiluminescent biosensor for choline based on enzyme/titanate nanotubes/chitosan composite modified electrode. Biosens Bioelectron. 2010;25(6):1414–9.

    Article  CAS  Google Scholar 

  50. Shang Q, Zhou Z, Shen Y, et al. Potential-modulated electrochemiluminescence of carbon nitride nanosheets for dual-signal sensing of metal ions. ACS Appl Mater Interface. 2015;7(42):23672–8.

    Article  CAS  Google Scholar 

  51. De Silva AP, Gunaratne HQN, Gunnlaugsson T, et al. Signaling recognition events with fluorescent sensors and switches. Chem Rev. 1997;97(5):1515–66.

    Article  Google Scholar 

  52. Luo HY, Zhang XB, Jiang JH, et al. An optode sensor for Cu2+ with high selectivity based on porphyrin derivative appended with bipyridine. Anal Sci. 2007;23(5):551–5.

    Article  CAS  Google Scholar 

  53. Ghosh I, Saleh N, Nau WM. Selective time-resolved binding of copper (II) by pyropheophorbide-a methyl ester. Photochem Photobiol Sci. 2010;9(5):649–54.

    Article  CAS  Google Scholar 

  54. Hu M, Li H, Chen L, et al. Fluorescence quenching of pheophytin-a by copper (II) ions. Chin J Chem. 2009;27(3):513–7.

    Article  CAS  Google Scholar 

  55. Domingues MRM, Santana-Marques MG, Ferrer-Correia AJ. Formation of metalloporphyrins and metallochlorins in the source of a mass spectrometer under fast atom bombardment. Int J Mass Spectrom Ion Process. 1997;165–166:551–9.

    Article  Google Scholar 

  56. Giovannetti R, Bartocci V, Ferraro S, Gusteri M, Passamonti P. Spectrophotometric study of coproporphyrin-I complexes of copper(II) and cobalt(II). Talanta. 1995;42:1913–8.

    Article  CAS  Google Scholar 

  57. Hu MB, Li HX, Chen LS, Zhang HB, Dong C. Fluorescence quenching of pheophytin-a by copper(II) ions. Chin J Chem. 2009;27:513–7.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Natural Science Foundation of China (grant nos. 21575115, 21327005, 21175108); the Program for Chang Jiang Scholars and Innovative Research Team, Ministry of Education, China (grant no. IRT1283); the Program for Innovative Research Group of Gansu Province, China (grant no. 1210RJIA001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoquan Lu.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Published in the topical collection Analytical Electrochemiluminescence with guest editors Hua Cui, Francesco Paolucci, Neso Sojic, and Guobao Xu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 166 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Devaramani, S., Shan, D. et al. Electrochemiluminescence behavior of meso-tetra(4-sulfonatophenyl)porphyrin in aqueous medium: its application for highly selective sensing of nanomolar Cu2+ . Anal Bioanal Chem 408, 7155–7163 (2016). https://doi.org/10.1007/s00216-016-9655-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-016-9655-0

Keywords

Navigation