Skip to main content

Advertisement

Log in

Synthesis and characterization of gold-conjugated Backhousia citriodora nanoparticles and their anticancer activity against MCF-7 breast and HepG2 liver cancer cell lines

  • Biomaterials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Environmentally benign-synthesized gold nanoparticles (Au-NPs) have received substantial attention owing to their biomedical applications, particularly in cancer therapy. In the current study, Backhousia citriodora (B. citriodora) leaf extract was applied as a reducing agent for one-pot synthesis of controlled size Au-NPs. The effect of various parameters such as reaction time, pH, and B. citriodora leaf boiling time on the synthesis of Au-NPs was studied. The characterization of the Au-NPs synthesized at 15.0-min incubation time showed colour change because of the surface plasma resonance band around 530.0 nm. TEM photographs showed spherical morphologies with an average size of 8.40 ± 0.084 nm and zeta potential value was − 29.74 mV, indicating stability of the nanoparticles. The biomedical properties of Au-NPs and B. citriodora leaf extract showed strong DPPH radical scavenging. The in vitro anticancer activity determined using MTT assay exhibited that Au-NPs showed a significant dose-dependent reduction in the viability of the MCF-7 breast cancer cell line and the HepG2 liver cancer cell line with IC50 values of 116.65 and 108.21 µg, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Soundarrajan C, Sankari A, Dhandapani P, Maruthamuthu S, Ravichandran S, Sozhan G, Palaniswamy N (2012) Rapid biological synthesis of platinum nanoparticles using Ocimum sanctum for water electrolysis applications. Bioprocess Biosyst Eng 35(5):827–833

    Article  Google Scholar 

  2. Hoshyar R, Khayati GR, Poorgholami M, Kaykhaii M (2016) A novel green one-step synthesis of gold nanoparticles using crocin and their anti-cancer activities. J Photochem Photobiol B 159:237–242

    Article  Google Scholar 

  3. Shankar SS, Rai A, Ahmad A, Sastry M (2004) Rapid synthesis of Au, Ag, and bimetallic Au core–Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth. J Colloid Interface Sci 275(2):496–502

    Article  Google Scholar 

  4. Daniel M-C, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104(1):293–346

    Article  Google Scholar 

  5. Dash SS, Bag BG (2014) Synthesis of gold nanoparticles using renewable Punica granatum juice and study of its catalytic activity. Appl Nanosci 4(1):55–59

    Article  Google Scholar 

  6. Murphy CJ, Gole AM, Stone JW, Sisco PN, Alkilany AM, Goldsmith EC, Baxter SC (2008) Gold nanoparticles in biology: beyond toxicity to cellular imaging. Acc Chem Res 41(12):1721–1730

    Article  Google Scholar 

  7. Rajeshkumar S (2016) Anticancer activity of eco-friendly gold nanoparticles against lung and liver cancer cells. J Genet Eng Biotechnol 14:195–202

    Article  Google Scholar 

  8. Khan Z, Bashir O, Hussain JI, Kumar S, Ahmad R (2012) Effects of ionic surfactants on the morphology of silver nanoparticles using Paan (Piper betel) leaf petiole extract. Colloids Surf B 98:85–90

    Article  Google Scholar 

  9. Khademi-Azandehi P, Moghaddam J (2015) Green synthesis, characterization and physiological stability of gold nanoparticles from Stachys lavandulifolia Vahl extract. Particuology 19:22–26

    Article  Google Scholar 

  10. Kharissova OV, Dias HR, Kharisov BI, Pérez BO, Pérez VMJ (2013) The greener synthesis of nanoparticles. Trends Biotechnol 31(4):240–248

    Article  Google Scholar 

  11. Santra TS, Tseng F-G, Barik TK (2014) Green biosynthesis of gold nanoparticles and biomedical applications. Am J Nano Res Appl 2(6–2):5–12

    Google Scholar 

  12. Irfan M, Ahmad T, Moniruzzaman MM, Abdullah BB, Bhattacharjee S (2016) Ionic liquid mediated biosynthesis of gold nanoparticles using Elaeis guineensis (oil palm) leaves extract. Procedia Eng 148:568–572

    Article  Google Scholar 

  13. Gan PP, Li SFY (2012) Potential of plant as a biological factory to synthesize gold and silver nanoparticles and their applications. Rev Environ Sci Biotechnol 11(2):169–206

    Article  Google Scholar 

  14. Dorosti N, Jamshidi F (2016) Plant-mediated gold nanoparticles by Dracocephalum kotschyi as anticholinesterase agent: synthesis, characterization, and evaluation of anticancer and antibacterial activity. J Appl Biomed 14:235–245

    Article  Google Scholar 

  15. Guo Y, Sakulnarmrat K, Konczak I (2014) Anti-inflammatory potential of native Australian herbs polyphenols. Toxicol Rep 1:385–390

    Article  Google Scholar 

  16. Devi JS, Bhimba BV (2012) Silver nanoparticles: antibacterial activity against wound isolates & invitro cytotoxic activity on Human Caucasian colon adenocarcinoma. Asian Pac J Trop Dis 2:S87–S93

    Article  Google Scholar 

  17. Unno Y, Shino Y, Kondo F, Igarashi N, Wang G, Shimura R, Yamaguchi T, Asano T, Saisho H, Sekiya S (2005) Oncolytic viral therapy for cervical and ovarian cancer cells by Sindbis virus AR339 strain. Clin Cancer Res 11(12):4553–4560

    Article  Google Scholar 

  18. Rosarin FS, Arulmozhi V, Nagarajan S, Mirunalini S (2013) Antiproliferative effect of silver nanoparticles synthesized using amla on Hep2 cell line. Asian Pac J Trop Med 6(1):1–10

    Article  Google Scholar 

  19. Mukherjee S, Ghosh S, Das DK, Chakraborty P, Choudhury S, Gupta P, Adhikary A, Dey S, Chattopadhyay S (2015) Gold-conjugated green tea nanoparticles for enhanced anti-tumor activities and hepatoprotection—synthesis, characterization and in vitro evaluation. J Nutr Biochem 26(11):1283–1297

    Article  Google Scholar 

  20. Sathishkumar M, Pavagadhi S, Mahadevan A, Balasubramanian R (2015) Biosynthesis of gold nanoparticles and related cytotoxicity evaluation using A549 cells. Ecotoxicol Environ Saf 114:232–240

    Article  Google Scholar 

  21. Murphy P, LaGrange M (1998) Raman spectroscopy of gold chloro-hydroxy speciation in fluids at ambient temperature and pressure: a re-evaluation of the effects of pH and chloride concentration. Geochim Cosmochim Acta 62(21):3515–3526

    Article  Google Scholar 

  22. Sathishkumar M, Mahadevan A, Vijayaraghavan K, Pavagadhi S, Balasubramanian R (2010) Green recovery of gold through biosorption, biocrystallization, and pyro-crystallization. Ind Eng Chem Res 49(16):7129–7135

    Article  Google Scholar 

  23. Naczk M, Shahidi F (2007) Corrigendum to “Phenolics in cereals, fruits and vegetables: occurrence, extraction and analysis”. J Pharm Biomed Anal 43(2):798 [(2006) J Pharm Biomed Anal 41:1523–1542]

    Article  Google Scholar 

  24. Sneha K, Sathishkumar M, Kim S, Yun Y-S (2010) Counter ions and temperature incorporated tailoring of biogenic gold nanoparticles. Process Biochem 45(9):1450–1458

    Article  Google Scholar 

  25. Xin Lee K, Shameli K, Miyake M, Kuwano N, Bt Ahmad Khairudin NB, Bt Mohamad SE, Yew YP (2016) Green synthesis of gold nanoparticles using aqueous extract of Garcinia mangostana fruit peels. J Nanomater 2016:7

    Article  Google Scholar 

  26. Shahzadi P, Muhammad A, Mehmood F, Chaudhry MY (2014) Synthesis of 3, 7-dimethyl-2, 6-octadienal acetals from citral extracted from lemon grass, Cymbopogon citrates L. J Antivir Antiretrovir 2014:028–031

    Google Scholar 

  27. Baker S, Satish S (2015) Biosynthesis of gold nanoparticles by Pseudomonas veronii AS41G inhabiting Annona squamosa L, Spectrochim. Acta A 150:691–695

    Article  Google Scholar 

  28. Mishra P, Ray S, Sinha S, Das B, Khan MI, Behera SK, Yun S-I, Tripathy SK, Mishra A (2016) Facile bio-synthesis of gold nanoparticles by using extract of Hibiscus sabdariffa and evaluation of its cytotoxicity against U87 glioblastoma cells under hyperglycemic condition. Biochem Eng J 105:264–272

    Article  Google Scholar 

  29. Ajitha B, Reddy YAK, Reddy PS (2015) Green synthesis and characterization of silver nanoparticles using Lantana camara leaf extract. Mater Sci Eng C 49:373–381

    Article  Google Scholar 

  30. Khandanlou R, Ngoh GC, Chong WT, Bayat S, Saki E (2016) Fabrication of silver nanoparticles supported on rice straw. In vitro antibacterial activity and its heterogeneous catalysis in the degradation of 4-nitrophenol. BioResources 11(2):3691–3708

    Article  Google Scholar 

  31. Levard C, Hotze EM, Lowry GV, Brown GE Jr (2012) Environmental transformations of silver nanoparticles: impact on stability and toxicity. Environ Sci Technol 46(13):6900–6914

    Article  Google Scholar 

  32. Karakoçak BB, Raliya R, Davis JT, Chavalmane S, Wang W-N, Ravi N, Biswas P (2016) Biocompatibility of gold nanoparticles in retinal pigment epithelial cell line. Toxicol In Vitro 37:61–69

    Article  Google Scholar 

  33. Stolarczyk EU, Stolarczyk K, Łaszcz M, Kubiszewski M, Maruszak W, Olejarz W, Bryk D (2017) Synthesis and characterization of genistein conjugated with gold nanoparticles and the study of their cytotoxic properties. Eur J Pharm Sci 96:176–185

    Article  Google Scholar 

  34. Konczak I, Zabaras D, Dunstan M, Aguas P (2010) Antioxidant capacity and phenolic compounds in commercially grown native Australian herbs and spices. Food Chem 122(1):260–266

    Article  Google Scholar 

  35. Rupesinghe EJR, Jones A, Shalliker RA, Pravadali-Cekic S (2016) A rapid screening analysis of antioxidant compounds in native australian food plants using multiplexed detection with active flow technology columns. Molecules 21(1):118

    Article  Google Scholar 

  36. Mata R, Nakkala JR, Sadras SR (2016) Polyphenol stabilized colloidal gold nanoparticles from Abutilon indicum leaf extract induce apoptosis in HT-29 colon cancer cells. Colloids Surf B 143:499–510

    Article  Google Scholar 

  37. Nirmala JG, Akila S, Narendhirakannan R, Chatterjee S (2017) Vitis vinifera peel polyphenols stabilized gold nanoparticles induce cytotoxicity and apoptotic cell death in A431 skin cancer cell lines. Adv Powder Technol 28:1170–1184

    Article  Google Scholar 

  38. Patra HK, Banerjee S, Chaudhuri U, Lahiri P, Dasgupta AK (2007) Cell selective response to gold nanoparticles. Nanomed Nanotech Biol Med 3(2):111–119

    Article  Google Scholar 

  39. Connor EE, Mwamuka J, Gole A, Murphy CJ, Wyatt MD (2005) Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity. Small 1(3):325–327

    Article  Google Scholar 

  40. Alkilany AM, Nagaria PK, Hexel CR, Shaw TJ, Murphy CJ, Wyatt MD (2009) Cellular uptake and cytotoxicity of gold nanorods: molecular origin of cytotoxicity and surface effects. Small 5(6):701–708

    Article  Google Scholar 

  41. Chithrani BD, Ghazani AA, Chan WC (2006) Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett 6(4):662–668

    Article  Google Scholar 

  42. AshaRani P, Low Kah Mun G, Hande MP, Valiyaveettil S (2008) Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano 3(2):279–290

    Article  Google Scholar 

  43. Kroemer G (1995) The pharmacology of T cell apoptosis. Adv Immunol 58:211–296

    Article  Google Scholar 

  44. Kumar R, Dwivedi PD, Dhawan A, Das M, Ansari KM (2011) Citrinin-generated reactive oxygen species cause cell cycle arrest leading to apoptosis via the intrinsic mitochondrial pathway in mouse skin. Toxicol Sci 122(2):557–566

    Article  Google Scholar 

  45. Nagajyothi P, Muthuraman P, Sreekanth T, Kim DH, Shim J (2016) Green synthesis: in-vitro anticancer activity of copper oxide nanoparticles against human cervical carcinoma cells. Arab J Chem 10:215–225

    Article  Google Scholar 

  46. Alkilany AM, Murphy CJ (2010) Toxicity and cellular uptake of gold nanoparticles: What we have learned so far? J Nanopart Res 12(7):2313–2333

    Article  Google Scholar 

  47. Arvizo R, Bhattacharya R, Mukherjee P (2010) Gold nanoparticles: opportunities and challenges in nanomedicine. Expert Opin Drug Deliv 7(6):753–763

    Article  Google Scholar 

  48. Sonavane G, Tomoda K, Makino K (2008) Biodistribution of colloidal gold nanoparticles after intravenous administration: effect of particle size. Colloid Surf B 66(2):274–280

    Article  Google Scholar 

  49. Chen Y-S, Hung Y-C, Liau I, Huang GS (2009) Assessment of the in vivo toxicity of gold nanoparticles. Nanoscale Res Lett 4(8):858

    Article  Google Scholar 

  50. Cho W-S, Cho M, Jeong J, Choi M, Cho H-Y, Han BS, Kim SH, Kim HO, Lim YT, Chung BH (2009) Acute toxicity and pharmacokinetics of 13 nm-sized PEG-coated gold nanoparticles. Toxicol Appl Pharmacol 236(1):16–24

    Article  Google Scholar 

  51. Dobrovolskaia MA, Patri AK, Zheng J, Clogston JD, Ayub N, Aggarwal P, Neun BW, Hall JB, McNeil SE (2009) Interaction of colloidal gold nanoparticles with human blood: effects on particle size and analysis of plasma protein binding profiles. Nanomed Nanotech Biol Med 5(2):106–117

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Charles Darwin University for its financial support (faculty research Grant), the Central Analytical Research Facility (CARF) operated by the Institute for Future Environments, Queensland University of Technology (QUT) for SEM, TEM, and XRD facilities and Dr. Sivanesan Arumugam at the Future Industries Institute (FII), University of South Australia, for assistance with obtaining zeta potential values in this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roshanak Khandanlou.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khandanlou, R., Murthy, V., Saranath, D. et al. Synthesis and characterization of gold-conjugated Backhousia citriodora nanoparticles and their anticancer activity against MCF-7 breast and HepG2 liver cancer cell lines. J Mater Sci 53, 3106–3118 (2018). https://doi.org/10.1007/s10853-017-1756-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1756-4

Keywords

Navigation