Skip to main content
Log in

Double-shelled hollow Na2FePO4F/C spheres cathode for high-performance sodium-ion batteries

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this study, the hierarchical hollow Na2FePO4F/C microspheres as high-performance cathode for sodium-ion batteries (SIBs) are developed by adjusting the reaction time of solvothermal synthesis. With prolonging solvothermal time, the structure of the microspheres gradually changes from urchin-like hollow structure to acanthosphere-like hollow structure and finally to double-shelled hollow structure. Dissolution–recrystallization mechanism is proposed to better understand the formation of the double-shelled hollow microspheres of Na2FePO4F/C. When evaluated as cathode materials for SIBs, the double-shelled hollow Na2FePO4F/C sample delivers a discharge capacity as high as 120.1 mAh g−1 at 0.1 C and maintains the capacity retention of 92.5% at 1 C after 200 cycles. For the purpose of explaining the improved electrochemical performance of the double-shelled hollow Na2FePO4F/C materials, all the electrodes are analyzed with cyclic voltammetry and electrochemical impedance spectroscopy. It is found that the excellent electrochemical performances are mainly attributed to its unique structure, which can enhance electronic and ionic conductivity during repeated Na+ insertion/extraction processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Dahbi M, Yabuuchi N, Kubota K, Tokiwa K, Komaba S (2014) Negative electrodes for Na-ion batteries. Phys Chem Chem Phys 16:15007–15018

    Article  Google Scholar 

  2. Palomares V, Casas-Cabanas M, Castillo-Martinez E, Han MH (2013) Update on Na-based battery materials: a growing research path. Sci Energy Environ 6:2312–2337

    Article  Google Scholar 

  3. Kim SW, Seo DH, Ma X, Ceder G, Kang K (2012) Electrode materials for rechargeable sodium-ion batteries: potential alternatives to current lithium-ion batteries. Adv Energy Mater 2:710–721

    Article  Google Scholar 

  4. Saravanan K, Mason CW, Rudola A, Wong KH, Balaya P (2013) The first report on excellent cycling stability and superior rate capability of Na3V2(PO4)3 for sodium ion batteries. Adv Energy Mater 3:444–450

    Article  Google Scholar 

  5. Xiong FY, Tan SS, Wei QL, Zhang GB, Sheng JZ, An QY, Mai LQ (2017) Three-dimensional graphene frameworks wrapped Li3V2(PO4)3 with reversible topotactic sodium-ion storage. Nano Energy 32:347–352

    Article  Google Scholar 

  6. Li J, Wang J, Liang X (2014) Hollow MnCo2O4 submicrospheres with multilevel interiors: from mesoporous spheres to yolk-in-double-shell structures. Appl Mater Interfaces 6:24–30

    Article  Google Scholar 

  7. Li JF, Xiong SL, Liu YR, Qian YT (2013) Uniform LiNi1/3Co1/3Mn1/3O2 hollow microspheres: designed synthesis, topotactical structural transformation and their enhanced electrochemical performance. Nano Energy 2:1249–1260

    Article  Google Scholar 

  8. Jin LM, Qiu YC, Deng H, Li WS, Li H, Yang SH (2011) Hollow CuFe2O4 spheres encapsulated in carbon shells as an anode material for rechargeable lithium-ion batteries. Electrochim Acta 56:9127–9132

    Article  Google Scholar 

  9. Han L, Liu R, Li C (2012) Controlled synthesis of double-shelled CeO2 hollow spheres and enzyme-free electrochemical bio-sensing properties for uric acid. J Mater Chem 22:17079–17085

    Article  Google Scholar 

  10. Zhou L, Zhao D, Lou XW (2012) Double-shelled CoMn2O4 hollow microcubes as high-capacity anodes for lithium-ion batteries. Adv Mater 24:745–748

    Article  Google Scholar 

  11. Liu W, Liu J, Chen KF (2014) Enhancing the electrochemical performance of the LiMn2O4 hollow microsphere cathode with a LiNi0.5Mn1.5O4 coated layer. Chem Eur J 20:824–830

    Article  Google Scholar 

  12. Ellis BL, Makahnouk WR, Rowan-Weetaluktuk WN, Ryan DH (2010) Crystal structure and electrochemical properties of A2MPO4F fluorophosphates (A = Na, Li; M = Fe, Mn Co, Ni). Chem Mater 22:1059–1070

    Article  Google Scholar 

  13. Lee IK, Shim IB, Kim C (2011) SPhase transition studies of sodium deintercalated Na2−x FePO4F (0 ≤ x ≤ 1) by Mössbauer spectroscopy. J Appl Phys 109:107–136

    Google Scholar 

  14. Brisbois M, Caes S, Sougrati MT (2016) Na2FePO4F/multi-walled carbon nanotubes for lithium-ion batteries: operando Mössbauer study of spray-dried composites. Sol Energy Mater Sol Cells 148:67–72

    Article  Google Scholar 

  15. Law M, Ramar V, Balaya P (2015) Synthesis, characterisation and enhanced electrochemical performance of nanostructured Na2FePO4F for sodium batteries. RSC Adv 6:50155–50164

    Article  Google Scholar 

  16. Wu XB, Zheng JM, Gong ZL, Yang Y (2011) Sol-gel synthesis and electrochemical properties of fluorophosphates Na2Fe1−x Mn x PO4F/C (x = 0, 0.1, 0.3, 0.7, 1) composite as cathode materials for lithium ion battery. J Mater Chem 21:18630–18637

    Article  Google Scholar 

  17. Cui D, Chen S, Han C, Yuan Y (2016) Carbothermal reduction synthesis of carbon coated Na2FePO4F for lithium ion batteries. J Power Sour 301:87–90

    Article  Google Scholar 

  18. Yu L, Chen S, Wu B, Lou XW (2013) Mesoporous Li4Ti5O12 hollow spheres with enhanced lithium storage capability. Adv Mater 25:2296–2300

    Article  Google Scholar 

  19. Xia Y, Wang B, Zhao X, Wang G, Wang H (2016) Core-shell composite of hierarchical MoS2 nanosheets supported on graphitized hollow carbon microspheres for high performance lithium-ion batteries. Electrochim Acta 187:55–64

    Article  Google Scholar 

  20. Langrock A, Xu Y, Liu Y, Ehrman S, Manivannan A (2013) Carbon coated hollow Na2FePO4F spheres for Na-ion battery cathodes. J Power Sour 223:62–67

    Article  Google Scholar 

  21. Li Y, Geng G, Hao J, Zhang J, Yang C (2015) Optimized synthesis of LiFePO4 composites via rheological phase assisted method from FePO4 with acetic acid as dispersant. Electrochim Acta 186:157–164

    Article  Google Scholar 

  22. Qin Z, Zhou X, Xia Y, Tang C, Liu Z (2012) Morphology controlled synthesis and modification of high-performance LiMnPO4 cathode materials for Li-ion batteries. J Mater Chem 22:21144–21153

    Article  Google Scholar 

  23. Wu T, Ma X, Liu X, Zeng G, Xiao W (2015) Effect of calcination temperature on electrochemical performances of LiFePO4/C cathode material. Mater Technol 30:70–74

    Article  Google Scholar 

  24. Peng Q, Dong YJ, Li YD, Zeng G, Xiao W (2003) ZnSe semiconductor hollow microspheres. Angew Chem Int Ed 42:3027–3030

    Article  Google Scholar 

  25. Cortright RD, Davda RR, Dumesic JA (2002) Hydrogen from catalytic reforming of biomass-derived hydrocarbons in liquid water. Nature 418:964–967

    Article  Google Scholar 

  26. Robertson J (2002) Diamond-like amorphous carbon. Mater Sci Eng 37:129–281

    Article  Google Scholar 

  27. Bajpai V, He PG, Dai LM (2004) Conducting-polymer microcontainers: controlled syntheses and potential applications. Adv Funct Mater 14:145–151

    Article  Google Scholar 

  28. Bai J, Li XG, Liu GZ, Qian YT, Xiong SL (2014) Unusual formation of ZnCo2O4 3D hierarchical twin microspheres as a high-rate and ultralong-life lithium-ion battery anode material. Adv Funct Mater 24:3012–3020

    Article  Google Scholar 

  29. Dong Q, Kumada N, Yonesaki Y, Takei T (2010) Template-free hydrothermal synthesis of hollow hematite microspheres. J Mater Sci 45:5685–5691. doi:10.1007/s10853-010-4634-x

    Article  Google Scholar 

  30. Liu X, Li YF, Zhu WW, Fu PF (2013) Building on size-controllable hollow nanospheres with superparamagnetism derived from solid Fe3O4 nanospheres: preparation, characterization and application for lipase immobilization. CrystEngComm 15:4937–4947

    Article  Google Scholar 

  31. Zhou Q, Liu L, Guo HP, Xu R, Tan JL, Yan ZC, Huang ZF, Shu HB, Yang XK, Wang XY (2015) Synthesis of nanosheets-assembled lithium titanate hollow microspheres and their application to lithium ion battery anodes. Electrochim Acta 151:502–509

    Article  Google Scholar 

  32. Park HS, Kim TH, Lee MH, Song HK (2012) Catalytic carbonization of an uncarbonizable precursor by transition metals in olivine cathode materials of lithium ion batteries. J Mater Chem 22:20305–20310

    Article  Google Scholar 

  33. Han DW, Ryu WH, Kim WK, Lim SJ (2013) Tailoring crystal structure and morphology of LiFePO4/C cathode materials synthesized by heterogeneous growth on nanostructured LiFePO4 seed crystals. ACS Appl Mater 5:1342–1347

    Article  Google Scholar 

  34. Nakamura T, Miwa Y, Tabuchi M, Yamada Y (2006) Structural and surface modifications of LiFePO4 olivine particles and their electrochemical properties. J Electrochem Soc 153:A1108–A1114

    Article  Google Scholar 

  35. Zhu CB, Song KP, van Aken PA, Maier J, Yu Y (2014) Carbon-coated Na3V2(PO4)3 embedded in porous carbon matrix: an ultrafast Na-storage cathode with the potential of outperforming Li cathodes. Nano Lett 14:2175–2180

    Article  Google Scholar 

  36. Xu YA, Wei QL, Xu C, Li QD, An QY, Zhang PF, Sheng JZ, Zhou L, Liqiang Mai LQ (2016) Layer-by-layer Na3V2(PO4)3 embedded in reduced graphene oxide as superior rate and ultralong-life sodium-ion battery cathode. Adv Energy Mater 6:1600389

    Article  Google Scholar 

  37. Ling R, Cai S, Shen SB, Hu XD, Xie DL, Zhang FY, Sun XH (2017) synthesis of carbon coated Na2FePO4F as cathode materials for high-performance sodium ion batteries. J Alloys Compd 704:631–640

    Article  Google Scholar 

  38. Kosova NV, Podugolnikov VR, Devyatkina ET, Slobodyuk AB (2014) Structure and electrochemistry of NaFePO4 and Na2FePO4F cathode materials prepared via mechanochemical route. Mater Res Bull 60:849–857

    Article  Google Scholar 

  39. Law M, Ramar V, Balaya P (2015) characterisation and enhanced electrochemical performance of nanostructured Na2FePO4F for sodium batteries. RSC Adv 5:50155–50164

    Article  Google Scholar 

  40. Yi TF, Yang SY, Li XY, Yao JH, Zhu YR, Zhu RS (2014) Sub-micrometric Li4−x Na x Ti5O12 (0 ≤ x ≤ 0.2) spinel as anode material exhibiting high rate capability. J Power Sour 246:505–511

    Article  Google Scholar 

  41. Shenouda AY, Liu HK (2010) Preparation, characterization, and electrochemical performance of Li2CuSnO4 and Li2CuSnSiO6 electrodes for lithium batteries. J Electrochem Soc 157:A1183–A1187

    Article  Google Scholar 

  42. Gao HY, Jiao LF, Yang JQ, Qi Z, Wang YJ, Yuan HT (2013) High rate capability of Co-doped LiFePO4/C. Electrochim Acta 97:143–149

    Article  Google Scholar 

  43. Liu H, Li C, Zhang HP, Fu LJ, Wu YP, Wu HQ (2006) High rate capability of co-doped LiFePO4/C. J Power Sour 159:717–720

    Article  Google Scholar 

  44. Gao F, Tang ZY (2008) Kinetic behavior of LiFePO4/C cathode material for lithium-ion batteries. Electrochem Acta 53:5071–5075

    Article  Google Scholar 

  45. Jiang T, Wei YJ, Pan WC, Li Z, Ming X, Chen G, Wang CZ (2009) Preparation and electrochemical studies of Li3V2(PO4)3/Cu composite cathode material for lithium ion batteries. J Alloys Compd 488:26–29

    Article  Google Scholar 

  46. Yu F, Zhang L, Lai L, Zhu M, Guo Y, Xia L, Qi P, Wang C (2015) High electrochemical performance of LiFePO4 cathode material via in-situ microwave exfoliated graphene oxide. Electrochim Acta 151:240–248

    Article  Google Scholar 

  47. Shu H, Chen M, Wen F, Fu Y, Liang Q, Yang X, Qi P, Shen Y (2015) Li fast ion conductive La0.56Li0.33TiO3 inlaid LiFePO4/C microspheres with enhanced high-rate performance as cathode materials. Electrochim Acta 152:368–377

    Article  Google Scholar 

  48. Brisbois M, Krins N, Hermannb RP, Schrijnemakers A, Cloots R, Vertruyen B, Boschini F (2014) Spray-drying synthesis of Na2FePO4F/carbon powders for lithium-ion batteries. Mater Lett 130:263–266

    Article  Google Scholar 

Download references

Acknowledgements

The work was financially supported by the National Natural Science Foundation of China (Project Nos. 51372166 and 51572186) and Tianjin Natural Science Foundation (Grant No. 15JCYBJC47500).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shu Cai or Xiaohong Sun.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 3473 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ling, R., Cai, S., Xie, D. et al. Double-shelled hollow Na2FePO4F/C spheres cathode for high-performance sodium-ion batteries. J Mater Sci 53, 2735–2747 (2018). https://doi.org/10.1007/s10853-017-1738-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1738-6

Keywords

Navigation