Skip to main content
Log in

Photochromic behavior of a new polyoxomolybdate/alkylamine composite in solid state

  • Polymers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A new polyoxomolybdate/alkylamine composite (C3N2H5)6[As4Mo8O33]·4H2O [1] was successfully synthesized by controlling the reaction parameters in the conventional aqueous solution. Compound 1 was well characterized by single-crystal X-ray diffraction, FTIR, XPRD analysis, TGA and elemental analyses. It was found that compound 1 exhibited intriguing photochromic behavior along with interesting thermochromic property as the color of 1 turns from white to blue-mazarine with rise in temperature. Furthermore, compound 1 features distinct photochromic behavior in the solid state. This new arsenomolybdate/alkylamine composite can change color from white to pale blue upon irradiation by a xenon lamp (full wave-band, P = 300 W). The photochromism of 1 involves the reduction of Mo6+ to Mo5+, indicating crucial role in proton transfer from the imidazole cations toward the polyanion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Scheme 1
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Remón P, Bälter M, Li S, Andréasson J, Pischel U (2011) An all-photonic molecule-based D flip-flop. J Am Chem Soc 133:20742–20745

    Article  Google Scholar 

  2. Credi A (2007) Molecules that make decisions. Angew Chem Int Ed 46:5472–5475

    Article  Google Scholar 

  3. Mori K, Ishibashi Y, Matsuda H et al (2011) One-color reversible control of photochromic reactions in a diarylethene derivative: three-photon cyclization and two-photon cycloreversion by a near-infrared femtosecond laser pulse at 1.28 μm. J Am Chem Soc 133:2621–2625

    Article  Google Scholar 

  4. Chen Z, Loo B-H, Ma Y et al (2004) Photochromism of novel molybdate/alkylamine composite thin films. ChemPhysChem 5:1020–1026

    Article  Google Scholar 

  5. Ferri V, Elbing M, Pace G et al (2008) Light-powered electrical switch based on cargo-lifting azobenzene monolayers. Angew Chem 120:3455–3457

    Article  Google Scholar 

  6. Yao X, Li T, Wang J et al (2016) Recent progress in photoswitchable supramolecular self-assembling systems. Adv Opt Mater 4:1322–1349

    Article  Google Scholar 

  7. Wang M-S, Xu G, Zhang Z-J, Guo G-C (2010) Inorganic–organic hybrid photochromic materials. Chem Commun 46:361–376

    Article  Google Scholar 

  8. Zhang Z-J, Xiang S-C, Guo G-C et al (2008) Wavelength-dependent photochromic inorganic–organic hybrid based on a 3D iodoplumbate open-framework material. Angew Chem Int Ed 47:4149–4152

    Article  Google Scholar 

  9. Ke X, Yan X, Song S et al (2007) Synthesis and characterization of a photochromic sol–gel material functionalized with azo dye. Opt Mater 29:1375–1380

    Article  Google Scholar 

  10. Volkan M, Stokesa D-L, Dinha V-T (2005) A sol–gel derived AgCl photochromic coating on glass for SERS chemical sensor application. Sens Actuators B Chem 106:660–667

    Article  Google Scholar 

  11. He T, Yao J (2006) Photochromism in composite and hybrid materials based on transition-metal oxides and polyoxometalates. Prog Mater Sci 51:810–879

    Article  Google Scholar 

  12. Coué V, Dessapt R, Bujoli-Doeuff M et al (2007) Synthesis, characterization, and photochromic properties of hybrid organic–inorganic materials based on molybdate, DABCO, and piperazine. Inorg Chem 46:2824–2835

    Article  Google Scholar 

  13. Wei F, Tie R, Zhang Y-L et al (2003) Photochromic behavior of nanocomposite hybrid films of finely dispersed phosphotungstic acid particles into polyacrylamide. J Mater Sci 38:1045–1048. doi:10.1023/A:1022302031156

    Article  Google Scholar 

  14. Yamase T, Ikawa T, Kokado H et al (1973) Photochromism of dimethylammonium molyedate. Chem Lett 2:615–616

    Article  Google Scholar 

  15. Liang Y, Li S, Yang D et al (2015) Controllable assembly of multicarboxylic acids functionalized heteropolyoxomolybdates and allochroic properties. J Mater Chem C 3:4632–4639

    Article  Google Scholar 

  16. Yang L, Zhou Z, Ma P-T et al (2013) Three organic–inorganic hybrid B-Anderson polyoxoanions as building blocks: syntheses, structures, and characterization of [(C6H5NO2)2Ln(H2O)6](CrMo6O24H6)·2C6H5NO2·6H2O (Ln = Sm, Dy, Er). J Coord Chem 66:1058–1067

    Article  Google Scholar 

  17. Hakouk K, Oms O, Dolbecq A et al (2013) Sulfonium polyoxometalates: a new class of solid-state photochromic hybrid organic–inorganic materials. Inorg Chem 52:555–557

    Article  Google Scholar 

  18. Zhang H, Duan L, Lan Y et al (2003) Synthesis, crystal structure, and photochromism of novel two-dimensional supramolecular networks based on Keggin-type polyoxoanion and lanthanide coordination cations. Inorg Chem 42:8053–8058

    Article  Google Scholar 

  19. Sang X, Li J, Zhang L et al (2014) A novel carboxyethyltin functionalized sandwich-type germanotungstate: synthesis, crystal structure, photosensitivity, and application in dye-sensitized solar cells. ACS Appl Mater Interfaces 6:7876–7884

    Article  Google Scholar 

  20. Li J-S, Sang X-J, Chen W-L et al (2015) Enhanced visible photovoltaic response of TiO2 thin film with an all-inorganic donor–acceptor type polyoxometalate. ACS Appl Mater Interfaces 7:13714–13721

    Article  Google Scholar 

  21. Han X-B, Zhang Z-M, Zhang T et al (2014) Polyoxometalate-based cobalt–phosphate molecular catalysts for visible light-driven water oxidation. J Am Chem Soc 136:5359–5366

    Article  Google Scholar 

  22. Kumar A, Devi M, Mamidi N et al (2015) Aromatic sulfonium polyoxomolybdates: solid-state photochromic materials with tunable properties. Chem—Eur J 21:18557–18562

    Google Scholar 

  23. Wang Y, Li H, Wu C et al (2013) Chiral heteropoly blues and controllable switching of achiral polyoxometalate clusters. Angew Chem Int Ed 52:4577–4581

    Article  Google Scholar 

  24. Fidalgo E-G, Neels A, Evans H-S et al (2002) New iso and heteropolyoxomolybdates: synthesis and molecular structure of the anions [Mo VI8 O26(OH)]5, [HAsIIIAsVMoVMo VI8 O34]6 and [HAsIIIAsVMoVMo VI8 O34{Co(C5H5N)2(H2O)3}]4. Polyhedron 21:1921–1928

    Article  Google Scholar 

  25. Li L, Liu B, Xue G et al (2009) Three hybrid organic–inorganic assemblies based on different arsenatomolybdates and CuII–organic units. Cryst Growth Des 9:5206–5212

    Article  Google Scholar 

  26. He Q, Wang E, You W et al (1999) Hydrothermal synthesis and structure of [AsIIIAsVMo VI9 O34]6−, a monocapped, trivacant Keggin species. J Mol Struct 508:217–221

    Article  Google Scholar 

  27. Sheldrick G-M (2008) A short history of SHELX. Acta Crystallogr A 64:112–122

    Article  Google Scholar 

  28. Niu J, Hua J, Ma X, Wang J (2012) Temperature-controlled assembly of a series of inorganic–organic hybrid arsenomolybdates. CrystEngComm 14:4060–4067

    Article  Google Scholar 

  29. Bondarenko V, Brill JW, Dumas J, Schlenker C (2004) Specific heat anomalies in the quasi two-dimensional monophosphate tungsten bronzes K x P4W8O32. Solid State Commun 129:211–215

    Article  Google Scholar 

  30. Cai L-Z, Chen Q-S, Zhang C-J et al (2015) Photochromism and photomagnetism of a 3d–4f hexacyanoferrate at room temperature. J Am Chem Soc 137:10882–10885

    Article  Google Scholar 

  31. Yamase T (1998) Photo- and electrochromism of polyoxometalates and related materials. Chem Rev 98:307–325

    Article  Google Scholar 

  32. Dolbecq A, Dumas E, Mayer CR, Mialane P (2010) Hybrid organic–inorganic polyoxometalate compounds: from structural diversity to applications. Chem Rev 110:6009–6048

    Article  Google Scholar 

  33. Ma P, Hu F, Wan R et al (2016) Magnetic double-tartaric bridging mono-lanthanide substituted phosphotungstates with photochromic and switchable luminescence properties. J Mater Chem C 4:5424–5433

    Article  Google Scholar 

  34. Papaconstantinou E (1989) Photochemistry of polyoxometallates of molybdenum and tungsten and/or vanadium. Chem Soc Rev 18:1–31

    Article  Google Scholar 

  35. Wang J, Liang Y, Ma P et al (2017) Ligand-controlled formation of covalently modified antimoniomolybdates and their photochromic properties. CrystEngComm 19:207–213

    Article  Google Scholar 

  36. Xu G, Guo G-C, Wang M-S et al (2007) Photochromism of a methyl viologen bismuth(III) chloride: structural variation before and after UV irradiation. Angew Chem Int Ed 46:3249–3251

    Article  Google Scholar 

  37. Dessapt R, Collet M, Coué V et al (2009) Kinetics of coloration in photochromic organoammonium polyoxomolybdates. Inorg Chem 48:574–580

    Article  Google Scholar 

  38. Yang D, Li S, Ma P et al (2013) Carboxylate-functionalized phosphomolybdates: ligand-directed conformations. Inorg Chem 52:8987–8992

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge support from the NSFC (Grant 21571050) and Natural Science Foundation of Henan Province (Grant 162300410015).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jingyang Niu or Jingping Wang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 755 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, J., Zhang, X., Ma, P. et al. Photochromic behavior of a new polyoxomolybdate/alkylamine composite in solid state. J Mater Sci 53, 3078–3086 (2018). https://doi.org/10.1007/s10853-017-1736-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1736-8

Keywords

Navigation