Skip to main content
Log in

Influence of aqueous milling duration on the sintered WC–10Co hard metal powders

  • Metals
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

This paper presents the effects of aqueous processing of WC–Co powders on their sinterability and mechanical properties. WC–Co powders have been milled in aqueous media (distilled water + corrosion inhibitor). The as-milled samples have been compacted and sintered in vacuum at 1380 °C. The investigations performed on the two components, carbide and binder, reveal different oxidation behaviour in water, with a further effect on the properties of the sintered product. The decrease of the saturation magnetisation of the compacts corroborated with the microstructure reveals the oxidation of the samples milled for a longer duration. The magnetic properties, hardness and microstructure suggest that the used corrosion inhibitor is effective for short milling durations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Upadhyaya GS (1998) 1—introduction. William Andrew Publishing, Westwood, pp 1–6

    Google Scholar 

  2. Lassner E, Schubert W-D (2012) Tungsten: properties, chemistry, technology of the element, alloys, and chemical compounds. Springer, New York

    Google Scholar 

  3. Marshall JM, Giraudel M (2015) The role of tungsten in the Co binder: effects on WC grain size and hcp–fcc Co in the binder phase. Int J Refract Metals Hard Mater 49:57–66

    Article  Google Scholar 

  4. Upadhyaya GS (1998) 2—crystal structure and phase equilibria. William Andrew Publishing, Westwood, pp 7–54

    Google Scholar 

  5. Kurlov AS, Gusev AI (2013) Tungsten carbides. Springer Ser Mater Sci 184:34–36

    Google Scholar 

  6. Borgh I et al (2014) Microstructure, grain size distribution and grain shape in WC–Co alloys sintered at different carbon activities. Int J Refract Metals Hard Mater 43:205–211

    Article  Google Scholar 

  7. Upadhyaya GS (1998) 4—consolidation of cemented carbides. William Andrew Publishing, Westwood, pp 89–137

    Book  Google Scholar 

  8. Lassner E, Schubert W-D (1999) Tungsten in hardmetals. Springer, Boston, pp 321–363

    Book  Google Scholar 

  9. Xueming M, Gang J, Ling Z, Yuanda D (1998) Structure and properties of bulk nano-structured WC–CO alloy by mechanical alloying. J Alloys Compd 264(1–2):267–270

    Article  Google Scholar 

  10. Sun Y, Su W, Yang H, Ruan J (2015) Effects of WC particle size on sintering behavior and mechanical properties of coarse grained WC–8Co cemented carbides fabricated by unmilled composite powders. Ceram Int 41(10):14482–14491

    Article  Google Scholar 

  11. Spriggs GE (1995) A history of fine grained hardmetal. Int J Refract Metals Hard Mater 13(5):241–255

    Article  Google Scholar 

  12. Mandel K, Krüger L, Schimpf C (2014) Particle properties of submicron-sized WC–12Co processed by planetary ball milling. Int J Refract Metals Hard Mater 42:200–204

    Article  Google Scholar 

  13. Wang H, Webb T, Bitler JW (2015) Different effects of Cr3C2 and VC on the sintering behavior of WC–Co materials. Int J Refract Metals Hard Mater 53(Part B):117–122

    Article  Google Scholar 

  14. Andersson KM, Bergström L (2000) Oxidation and dissolution of tungsten carbide powder in water. Int J Refract Metals Hard Mater 18(2–3):121–129

    Article  Google Scholar 

  15. Hewitt SA, Kibble KA (2009) Effects of ball milling time on the synthesis and consolidation of nanostructured WC–Co composites. Int J Refract Metals Hard Mater 27(6):937–948

    Article  Google Scholar 

  16. Laarz E, Bergström L (2000) Dispersing WC–Co powders in aqueous media with polyethylenimine. Int J Refract Metals Hard Mater 18(6):281–286

    Article  Google Scholar 

  17. Su B-L, Sanchez C, Yang X-Y (2012) Hierarchically structured porous materials: from nanoscience to catalysis, separation, optics, energy, and life science. Wiley, New York

    Google Scholar 

  18. Chivot J, Mendoza L, Mansour C, Pauporté T, Cassir M (2008) New insight in the behaviour of Co–H2O system at 25–150 °C, based on revised Pourbaix diagrams. Corros Sci 50(1):62–69

    Article  Google Scholar 

  19. Andersson KM (2004) Aqueous processing of WC–Co powders

  20. Tang C-W, Wang C-B, Chien S-H (2008) Characterization of cobalt oxides studied by FT-IR, Raman, TPR and TG-MS. Thermochim Acta 473(1):68–73

    Article  Google Scholar 

  21. Warren A, Nylund A, Olefjord I (1996) Oxidation of tungsten and tungsten carbide in dry and humid atmospheres. Int J Refract Metals Hard Mater 14(5–6):345–353

    Article  Google Scholar 

  22. Zhang FL, Wang CY, Zhu M (2003) Nanostructured WC/Co composite powder prepared by high energy ball milling. Scr Mater 49(11):1123–1128

    Article  Google Scholar 

  23. Neamţu BV, Chicinaş HF, Marinca TF, Isnard O, Chicinaş I (2016) Preparation and characterisation of Co–Fe–Ni–M–Si–B (M = Zr, Ti) amorphous powders by wet mechanical alloying. J Alloys Compd 673C:80–85

    Article  Google Scholar 

  24. Huang J, Wu Y, Ye H (1996) Allotropic transformation of cobalt induced by ball milling. Acta Mater 44(3):1201–1209

    Article  Google Scholar 

  25. Upadhyaya GS (1998) 8—magnetic properties. William Andrew Publishing, Westwood, pp 227–236

    Google Scholar 

  26. Hashe NG, Neethling JH, Berndt PR, Andrén H-O, Norgren S (2007) A comparison of the microstructures of WC–VC–TiC–Co and WC–VC–Co cemented carbides. Int J Refract Metals Hard Mater 25(3):207–213

    Article  Google Scholar 

  27. Yang Q, Yang J, Yang H, Ni G, Ruan J (2017) Synthesis of ultrafine WC–10Co composite powders with carbon boat added and densification by sinter-HIP. Int J Refract Metals Hard Mater 62:104–109

    Article  Google Scholar 

  28. Fabijanić TA, Alar Ž, Ćorić D (2016) Influence of consolidation process and sintering temperature on microstructure and mechanical properties of near nano- and nano-structured WC–Co cemented carbides. Int J Refract Metals Hard Mater 54:82–89

    Article  Google Scholar 

Download references

Acknowledgements

This work was made possible by the generous support of Gühring Company.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. F. Chicinaş.

Ethics declarations

Conflict of interest

No conflict of interest exists.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chicinaş, H.F., Marinca, T.F., Götze, P. et al. Influence of aqueous milling duration on the sintered WC–10Co hard metal powders. J Mater Sci 53, 2901–2910 (2018). https://doi.org/10.1007/s10853-017-1701-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1701-6

Keywords

Navigation