Skip to main content
Log in

Analysis of dislocation networks in crept single crystal nickel-base superalloy

  • Metals
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The creep behaviour at 1050 °C of <001> oriented MC2 single crystals is analysed by means of SEM and TEM observations. The γγ′ rafting process occurs rapidly and appears to be correlated with the establishment of a pseudo-stationary creep stage. The regular and stable networks are seen in the (001) interfaces. A detailed analysis of dislocation networks in these (001) interfaces shows that they are constituted by an association of hexagonal and square cells of a/2 <110> dislocations. The square part is unstable and gives rise to the systematic creation of a <001> dislocations included in the misfit dislocation network.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Biemann H, Grossmann BV, Schneider T, Feng H, Mughrabi H (1996) Investigation of γ/γ′morphology and internal stresses in a monocrystalline turbine blade after service: determination of the local thermal and mechanical loads. In: Kissenger RD, Deye DJ, Anton DL, Cetel AD, Nathal MV, Pollock TM et al (eds) Superalloys. TMS, Warrendale, pp 201–210

    Google Scholar 

  2. Epishin A, Link T, Nazmy M, Staubli M, Klingelhoffer H, Nolze G (2008) Microstructural degradation of CMSX-4: kinetics and effect on mechanical properties. In: Reed R, Green K, Caron P, Gabb T, Fahrmann M, Huron E et al (eds) Superalloys. TMS, Warrendale, pp 725–731

    Google Scholar 

  3. Nabarro Frank RN (1996) Rafting in superalloys. Metal Mater Trans A 27:513–530

    Article  Google Scholar 

  4. Glatzel U, Feller-Kniepmeier M (1989) Calculations of internal stresses in the γ/γ′ microstructure of a nickel-base superalloy with high volume fraction of γ′-phase. Scr Metall 23:1839–1844

    Article  Google Scholar 

  5. Ganghoffer JF, Hazotte A, Denis S, Simon A (1991) Finite element calculation of internal mismatch stresses in a single crystal nickel base superalloy. Scr Metall Mater 25:2491–2496

    Article  Google Scholar 

  6. Müller L, Glatzel U, Feller-Kniepmeier M (1993) Calculation of the internal stresses and strains in the microstructure of a single crystal nickel-base superalloy during creep. Acta Metal Mater 41:3401–3411

    Article  Google Scholar 

  7. Lasalmonie A, Strudel JL (1975) Interfacial dislocation networks around γ′ precipitates in nickel-base alloys. Philos Mag B 32:937–949

    Article  Google Scholar 

  8. Feller-Kniepmeier M, Link T (1989) Dislocation structures in γγ′ interfaces of the single-crystal superalloy SRR 99 after annealing and high temperature creep. Mater Sci Eng A 113:191–195

    Article  Google Scholar 

  9. Gabb TP, Draper D, Hull DR, Mackey RA, Nathal MV (1989) The role of interfacial dislocation networks in high temperature creep of superalloys. Mater Sci Eng A 118:59–69

    Article  Google Scholar 

  10. Keller RR, Maier HJ, Mughrabi H (1993) Characterization of interfacial dislocation networks in a creep-deformed nickel-base superalloy. Scr Metall Mater 28:23–28

    Article  Google Scholar 

  11. Li J, Wahi RP (1995) Investigation of γ/γ′ lattice mismatch in the polycrystalline nickel-base superalloy IN738LC: influence of heat treatment and creep deformation. Acta Metal Mater 43:507–517

    Article  Google Scholar 

  12. Gabrisch H, Mukherji D, Wahi RP (1996) Deformation-induced dislocation networks at the γγ′ interfaces in the single-crystal superalloy SC16: a mechanism-based analysis. Philos Mag A 74:229–249

    Article  Google Scholar 

  13. Luo ZP, Wu ZT, Miller DJ (2003) The dislocation microstructure of a nickel-base single-crystal superalloy after tensile fracture. Mater Sci Eng A 354:358–368

    Article  Google Scholar 

  14. Field RD, Pollock TM, Murphy WH (1992) The development of γ/γ′ interfacial dislocation networks during creep in Ni-base superalloys. In: Antolovich SD, Stusrud RW, Mackay RA, Anton DL, Khan T, Kissinger RD, Klarstrom DL (eds) Superalloys 1992. The Minerals, Metals and Materials Society, Warrendale, pp 557–566

    Google Scholar 

  15. Cormier J (2006) Comportement en fluage anisotherme à haute et très haute température du superalliage monocristallin MC2, Thèse de doctorat, Université de Poitiers, Poitiers

  16. Brooks H (1952) Theory of internal boundaries. In: Metal interfaces, AMS, pp 20–64

  17. Hirth JP, Lothe J (1968) Theory of dislocations, 1st edn. Elsevier, New York, pp 300–302

    Google Scholar 

  18. Feller-Kniepmeier M, Link T (1989) Correlation of microstructure and creep stages in the <100> oriented superalloy SRR 99 at 1253 K. Metall Trans A 20:1233–1238

    Article  Google Scholar 

  19. Pollock TM, Argon AS (1992) Creep resistance of CMSX-3 nickel base superalloy single crystals. Acta Metall 40:1–30

    Article  Google Scholar 

  20. Read RC, Matan N, Cox DC, Rist MA, Rae CMF (1999) Creep of CMSX-4 superalloy single crystals: effects of rafting at high temperature. Acta Mater 47:3367–3381

    Article  Google Scholar 

  21. Nathal M, Ebert LJ (1983) Gamma prime shape changes during creep of a nickel-base superalloy. Scr Metall 17:1151–1154

    Article  Google Scholar 

  22. Nathal MV, Ebert LJ (1985) Elevated temperature creep-rupture behavior of the single crystal nickel-base superalloy NASAIR 100. Metall Trans A 16:427–439

    Article  Google Scholar 

  23. Sugui T, Huihua Z, Jinghua Z, Hongcai Y, Yongbo X, Zhuangqi H (1999) Formation and role of dislocation networks during high temperature creep of a single crystal nickel–base superalloy. Mater Sci Eng A 279:160–165

    Article  Google Scholar 

  24. Singh AK, Louat N, Sadananda K (1988) Dislocation network formation and coherency loss around gamma- prime precipitates in a nickel-base superalloy. Metall Trans A 19:2965–2973

    Article  Google Scholar 

  25. Monpiou F, Caillard D (2008) On the stress exponent of dislocation climb velocity. Mater Sci Eng A483–484:143–147

    Article  Google Scholar 

  26. Louchet F, Ignat M (1986) TEM analysis of square-shaped dislocation configurations in the γ′ phase of a Ni-based superalloy. Acta Metall 34:1681–1685

    Article  Google Scholar 

  27. Epishin A, Link T (2004) Mechanisms of high-temperature creep of nickel-based superalloys under low applied stresses. Philos Mag 84:1979–2000

    Article  Google Scholar 

  28. Link T, Epishin A, Klaus M, Bruckner U, Reznicek A (2005) <100> Dislocations in nickel-base superalloys: formation and role in creep deformation. Mater Sci Eng A 405:254–265

    Article  Google Scholar 

  29. Eggeler G, Dlouhy A (1997) On the formation of <010> -dislocations in the γ′-phase of superalloy single crystals during high temperature low stress creep. Acta Mater 45:4251–4262

    Article  Google Scholar 

  30. Boualy O, Clément N, Benyoucef M, coming paper

Download references

Acknowledgements

The authors dedicate this work to the late Pr. A. Coujou whose contribution to this work has been extremely valuable. The authors would like to thank the CEMES Laboratory of Toulouse, France, that allowed us to conduct this work. This work was supported by ONERA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Benyoucef.

Ethics declarations

Conflict of interest

No conflict of interest exists.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boualy, O., Clément, N. & Benyoucef, M. Analysis of dislocation networks in crept single crystal nickel-base superalloy. J Mater Sci 53, 2892–2900 (2018). https://doi.org/10.1007/s10853-017-1699-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1699-9

Keywords

Navigation