Skip to main content
Log in

Elevated temperature creep-rupture behavior of the single crystal nickel-base superalloy NASAIR 100

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

The creep and rupture behavior of [001] oriented single crystals of the nickel-base superalloy NASAIR 100 was investigated at temperatures of 925 and 1000 °C. In the stress and temperature ranges studied, the steady state creep rate, time to failure, time to the onset of secondary creep, and the time to the onset of tertiary creep all exhibited power law dependencies on the applied stress. The creep rate exponents for this alloy were between seven and eight, and the modulus-corrected activation energy for creep was approximately 350 kjoule/mole, which was comparable to the measured activa-tion energy for Ostwald ripening of the γ′ precipitates. Oriented γ′ coarsening to form lamellae perpendicular to the applied stress was very prominent during creep. At 1000 °C, the formation of a continuous γ-γ′ lamellar structure was completed during the primary creep stage. Shear through the γ-γ ' interface is considered to be the rate limiting step in the deformation process. Gradual thickening of the lamellae appeared to be the cause of the onset of tertiary creep. At 925 °C, the fully developed lamellar structure was not achieved until the secondary or tertiary creep stages. At this temperature, the γ-γ′ lamellar structure did not appear to be as beneficial for creep resistance as at the higher temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.C. Law and M.J. Blackburn:Metall. Trans. A, 1980, vol. 11A, p. 495.

    CAS  Google Scholar 

  2. J.P. Dennison, P.D. Holmes, B. Wilshire:Mat. Sci. Eng., 1978, vol. 33, p. 35.

    Article  CAS  Google Scholar 

  3. H. Burt, J. P. Dennison, I. C. Elliott, and B. Wilshire:Mat. Sci. Eng., 1982, vol. 53, p. 245.

    Article  CAS  Google Scholar 

  4. R. A. Stevens and P. E. J. Flewitt:Mat. Sci. Eng., 1979, vol. 37, p. 237.

    Article  CAS  Google Scholar 

  5. G.A. Webster and B.J. Piearcey:Metal Sci. J., 1967, vol. 1, p. 97.

    Article  CAS  Google Scholar 

  6. G.R. Leverant and B.H. Kear:Metall. Trans. A, 1970, vol. 1, p. 491.

    CAS  Google Scholar 

  7. G.R. Leverant, B.H. Kear, and J. M. Oblak:Metall. Trans., 1973, vol. 4, p. 355.

    Article  CAS  Google Scholar 

  8. R. A. MacKay and R.D. Maier:Metall. Trans. A, 1982, vol. 13A, p. 1747.

    Google Scholar 

  9. C. Carry and J.L. Strudel:Acta Metall., 1978, vol. 26, p. 859.

    Article  CAS  Google Scholar 

  10. D. D. Pearson, F. D. Lemkey, and B. H. Kear: inSuperalloys 1980, Proc. 4th Int. Symp. on Superalloys, J. K. Tien,et al., eds., ASM, Metals Park, OH, 1980, p. 513.

    Google Scholar 

  11. D.D. Pearson, B. H. Kear, and F. D. Lemkey: inCreep and Fracture of Engineering Materials and Structures, B. Wilshire and D.R. J. Owen, eds., Pineridge Press, Swansea, U.K., 1981, p. 213.

    Google Scholar 

  12. P. Caron and T. Kahn:Mat. Sci. Eng., 1983, vol. 61, p. 173.

    Article  CAS  Google Scholar 

  13. R.A. MacKay and L.J. Ebert:Scripta Metall., 1983, vol. 17, p. 1217.

    Article  CAS  Google Scholar 

  14. R.A. MacKay and L.J. Ebert: inSuperalloys 1984,Proc. 5th Int. Symp. on Superalloys, M. Gell, C. S. Kortovich, R. H. Bricknell, W. B. Kent, and J. F. Ractavich, eds., AIME, Warrendale, PA, 1984, p. 135.

    Google Scholar 

  15. T.E. Strangman, G.S. Hoppin, C.M. Phipps, K. Harris, and R.E. Schwer: inSuperalloys 1980, Proc. 4th Int. Symp. on Superalloys, J. K. Tien,et al., eds., ASM, Metals Park, OH, 1980, p. 215.

    Google Scholar 

  16. J.R. Stephens: NASA TM-83006, National Technical Information Services, Springfield, VA, 22161, 1982.

  17. M.V. Nathal: Ph.D. Thesis, Case Western Reserve University, Cleveland, OH, January 1984.

    Google Scholar 

  18. M.J. Donachie and O. H. Kriege:J. Mat., 1972, vol. 7, p. 269.

    CAS  Google Scholar 

  19. T. E. Strangman, B. Heath, and M. Fujii: NASA CR-168218, National Technical Information Services, Springfield, VA, 22161, 1983.

  20. F. C. Monkman and N. J. Grant:Proc. ASTM, 1956, vol. 56, p. 834.

    Google Scholar 

  21. A. K. Mukherjee, J.E. Bird, and J.E. Dorn:Trans. ASM, 1969, vol. 62, p. 155.

    CAS  Google Scholar 

  22. W. D. Nix and B. Ilschner:5th Int. Conf. Strength of Metals and Alloys, P. Haasen, V. Gerold, and G. Koster, eds., Pergamon Press, Oxford, 1979, vol. 3, p. 1503.

    Google Scholar 

  23. A. Lasalmonie and J.L. Strudel:Phil. Mag., 1975, vol. 32, p. 937.

    Article  CAS  Google Scholar 

  24. G.C. Weatherly and R.B. Nicholson:Phil. Mag., 1968, vol. 17, p. 801.

    Article  CAS  Google Scholar 

  25. D.A. Grose and G.S. Ansell:Metall. Trans. A, 1981, vol. 12A, p. 1631.

    Google Scholar 

  26. M. V. Nathal and L. J. Ebert:Scripta Metall., 1983, vol. 17, p. 1151.

    Article  CAS  Google Scholar 

  27. J. Lin and O. D. Sherby:Res Mechanica, 1981, vol. 2, p. 251.

    CAS  Google Scholar 

  28. O. D. Sherby, R. H. Klundt, and A. K. Miller:Metall. Trans. A, 1977, vol. 8A, p. 843.

    CAS  Google Scholar 

  29. J.C. Gibeling and W. D. Nix:Met. Sci., 1977, vol. 11, p. 453.

    CAS  Google Scholar 

  30. J.D. Parker and B. Wilshire:Phil. Mag., 1980, vol. 41A, p. 665.

    Google Scholar 

  31. S. Takeuchi and A.S. Argon:J. Mat. Sci., 1976, vol. 11, p. 1542.

    Article  CAS  Google Scholar 

  32. W.J. Evans and G. F. Harrison:Met. Sci., 1979, vol. 13, p. 346.

    CAS  Google Scholar 

  33. J. Askill:Tracer Diffusion Data for Metals, Alloys, and Simple Oxides, Plenum Publishing Corp., New York, NY, 1970.

    Google Scholar 

  34. E. H. VanDerMolen, J. M. Oblak, and O. H. Kriege:Metall. Trans., 1971, vol. 2, p. 1627.

    CAS  Google Scholar 

  35. A.J. Ardell and R.B. Nicholson:J. Phys. Chem. Solids, 1966, vol. 27, p. 1793.

    Article  CAS  Google Scholar 

  36. J. W. Martin and R.D. Doherty:Stability of Microstructure in Metallic Systems, Cambridge Univ. Press, Cambridge, 1976, p. 154.

    Google Scholar 

  37. B. F. Dyson and M. McLean:Acta Metall., 1983, vol. 31, p. 17.

    Article  CAS  Google Scholar 

  38. P. J. Henderson and M. McLean:Acta Metall., 1983, vol. 31, p. 1203.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nathal, M.V., Ebert, L.J. Elevated temperature creep-rupture behavior of the single crystal nickel-base superalloy NASAIR 100. Metall Trans A 16, 427–439 (1985). https://doi.org/10.1007/BF02814341

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02814341

Keywords

Navigation