Skip to main content
Log in

Amorphous MnO2-modified Li3V2(PO4)3/C as high-performance cathode for LIBs: the double effects of surface coating

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

MnO2-modified Li3V2(PO4)3/C (LVP/C) composites with plate-like structure were prepared via an improved sol–gel method followed by PVA-assisted suspension coating. The plate-like structure provides an enlarged contact area between the electrolyte and electrode, alleviating the Li+ diffusion and e transport during the reaction process. The formed hybrid coating layer consisted of C and MnO2 has the double effects, that is, the formation of a complete continuous protective layer on the surface of LVP particles and the simultaneous improvement of electronic and ionic conductivities. This coating layer not only prevents the V3+ dissolution into the electrolyte, but also achieves the simultaneous Li+/e diffusion at charge–discharge process. Benefiting from the unique structure and the synergistic effect of C and MnO2, the 3 wt% MnO2-modified LVP/C material (M-3) exhibits the most excellent electrochemical performance among all the samples. At a high current rate of 5 C, the M-3 electrode delivers a discharge capacity of 113.2 mAh g−1 and corresponds to capacity retention almost 100% after 100 cycles. Even at low temperatures of 0 and − 20 °C, the discharge capacities of M-3 are 102.4 mAh g−1 at 2 C and 81.6 mAh g−1 at 1 C, with capacity retention of 98.8 and 97.3%, respectively. The enhanced electrochemical performance of M-3 is mainly attributed to the cooperation of C and MnO2, which provides large specific surface area and complete conductive network. As a result, the MnO2-modified LVP/C composites with the plate-like structure can be a promising candidate as cathode materials for LIBs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. Stempien JP, Chan SH (2017) Comparative study of fuel cell, battery and hybrid buses for renewable energy constrained areas. J Power Sources 340:347–355

    Article  Google Scholar 

  2. Li Y, Yang J, Song J (2017) Design principles and energy system scale analysis technologies of new lithium-ion and aluminum-ion batteries for sustainable energy electric vehicles. Renew Sustain Energy Rev 71:645–651

    Article  Google Scholar 

  3. Zhou Y, Lee Y, Sun H et al (2017) Coating solution for high-voltage cathode: AlF3 atomic layer deposition for freestanding licoo2 electrodes with high energy density and excellent flexibility. ACS Appl Mater Interfaces 9:9614–9619

    Article  Google Scholar 

  4. Yi T-F, Mei J, Zhu Y-R (2016) Key strategies for enhancing the cycling stability and rate capacity of LiNi0.5Mn1.5O4 as high-voltage cathode materials for high power lithium-ion batteries. J Power Sources 316:85–105

    Article  Google Scholar 

  5. Eftekhari A (2017) LiFePO4/C nanocomposites for lithium-ion batteries. J Power Sources 343:395–411

    Article  Google Scholar 

  6. Gao H, Li Y, Park K, Goodenough JB (2016) Sodium extraction from NASICON-structured Na3MnTi(PO4)3 through Mn(III)/Mn(II) and Mn(IV)/Mn(III) redox couples. Chem Mater 28:6553–6559

    Article  Google Scholar 

  7. Ivanishchev AV, Ushakov AV, Ivanishcheva IA et al (2017) Structural and electrochemical study of fast Li diffusion in Li3V2(PO4)3-based electrode material. Electrochim Acta 230:479–491

    Article  Google Scholar 

  8. Yamada A, Chung SC, Hinokuma K (2001) Optimized LiFePO4 for lithium battery cathodes. J Electrochem Soc 148:A224–A229

    Article  Google Scholar 

  9. Rui X, Yan Q, Skyllas-Kazacos M, Lim TM (2014) Li3V2(PO4)3 cathode materials for lithium-ion batteries: a review. J Power Sources 258:19–38

    Article  Google Scholar 

  10. Ren M, Yang M, Liu W et al (2016) Co-modification of nitrogen-doped graphene and carbon on Li3V2(PO4)3 particles with excellent long-term and high-rate performance for lithium storage. J Power Sources 326:313–321

    Article  Google Scholar 

  11. Ivanishchev AV, Ushakov AV, Ivanishcheva IA et al (2017) Structural and electrochemical study of fast Li diffusion in Li3V2(PO4)3-based electrode material. Electrochim Acta 230:479–491

    Article  Google Scholar 

  12. Cheng Y, Ni X, Feng K et al (2016) Phase-change enabled 2D Li3V2(PO4)3/C submicron sheets for advanced lithium-ion batteries. J Power Sources 326:203–210

    Article  Google Scholar 

  13. He W, Wei C, Zhang X et al (2016) Li3V2(PO4)3/LiFePO4 composite hollow microspheres for wide voltage lithium ion batteries. Electrochim Acta 219:682–692

    Article  Google Scholar 

  14. Xiong F, Tan S, Wei Q et al (2017) Three-dimensional graphene frameworks wrapped Li3V2(PO4)3 with reversible topotactic sodium-ion storage. Nano Energy 32:347–352

    Article  Google Scholar 

  15. Zhang L-L, Li Z, Yang X-L et al (2017) Binder-free Li3V2(PO4)3/C membrane electrode supported on 3D nitrogen-doped carbon fibers for high-performance lithium-ion batteries. Nano Energy 34:111–119

    Article  Google Scholar 

  16. Yan H, Zhang G, Li Y (2017) Synthesis and characterization of advanced Li3V2(PO4)3 nanocrystals@conducting polymer PEDOT for high energy lithium-ion batteries. Appl Surf Sci 393:30–36

    Article  Google Scholar 

  17. Chen Y, Zhao Y, An X et al (2009) Preparation and electrochemical performance studies on Cr-doped Li3V2(PO4)3 as cathode materials for lithium-ion batteries. Electrochim Acta 54:5844–5850

    Article  Google Scholar 

  18. Yang Y, Xu W, Guo R et al (2014) Synthesis and electrochemical properties of Zn-doped, carbon coated lithium vanadium phosphate cathode materials for lithium-ion batteries. J Power Sources 269:15–23

    Article  Google Scholar 

  19. Sun H-B, Zhou Y-X, Zhang L-L et al (2017) Investigations on Zr incorporation into Li3V2(PO4)3/C cathode materials for lithium ion batteries. Phys Chem Chem Phys 19:5155–5162

    Article  Google Scholar 

  20. Liang S, Tan Q, Xiong W et al (2016) Carbon wrapped hierarchical Li3V2(PO4)3 microspheres for high performance lithium ion batteries. Sci Rep 6:33682

    Article  Google Scholar 

  21. Mao W, Fu Y, Zhao H et al (2015) Rational design and facial synthesis of Li3V2(PO4)3@C nanocomposites using carbon with different dimensions for ultrahigh-rate lithium-ion batteries. ACS Appl Mater Interfaces 7:12057–12066

    Article  Google Scholar 

  22. Liang S, Hu J, Zhang Y et al (2016) Facile synthesis of sandwich-structured Li3V2(PO4)3/carbon composite as cathodes for high performance lithium-ion batteries. J Alloys Compd 683:178–185

    Article  Google Scholar 

  23. Kalluri S, Yoon M, Jo M, et al (2017) Feasibility of cathode surface coating technology for high-energy lithium-ion and beyond-lithium-ion batteries. Adv Mater 1605807

  24. Li H, Zhou H (2012) Enhancing the performances of Li-ion batteries by carbon-coating: present and future. Chem Commun 48:1201–1217

    Article  Google Scholar 

  25. Yang Y, Guo R, Cai G et al (2014) Preparation and electrochemical properties of ceria coated Li3V2(PO4)3/C cathode materials for lithium-ion batteries. J Electrochem Soc 161:A2153–A2159

    Article  Google Scholar 

  26. An J, Liu C, Guo R et al (2012) Ti3SiC2 modified LiFePO4/C cathode materials with improved electrochemical performance. J Electrochem Soc 159:A2038–A2042

    Article  Google Scholar 

  27. Sun D, Wu C, Guo R et al (2017) Enhanced low temperature electrochemical properties of Li3V2(PO4)3/C modified by a mixed conductive network of Ti3SiC2 and C. Ceram Int 43:2791–2800

    Article  Google Scholar 

  28. Zhang L-L, Liang G, Peng G et al (2012) Significantly improved electrochemical performance in Li3V2(PO4)3/C promoted by SiO2 coating for lithium-ion batteries. J Phys Chem C 116:12401–12408

    Article  Google Scholar 

  29. Cai G, Guo R, Liu L et al (2015) Enhanced low temperature electrochemical performances of LiFePO4/C by surface modification with Ti3SiC2. J Power Sources 288:136–144

    Article  Google Scholar 

  30. Lee HY, Goodenough JB (1999) Supercapacitor behavior with KCl electrolyte. J Solid State Chem 144:220–223

    Article  Google Scholar 

  31. Esmaeilbeig MA, Movahedirad S (2017) Prediction of the self-diffusion coefficients in aqueous KCl solution using molecular dynamics: a comparative study of two force fields. Korean J Chem Eng 34:977–986

    Article  Google Scholar 

  32. Ziolkowska D, Korona KP, Hamankiewicz B et al (2013) The role of SnO2 surface coating on the electrochemical performance of LiFePO4 cathode materials. Electrochim Acta 108:532–539

    Article  Google Scholar 

  33. Zhang C, Shen L, Li H et al (2016) Enhanced electrochemical properties of MgF2 and C co-coated Li3V2(PO4)3 composite for Li-ion batteries. J Electroanal Chem 762:1–6

    Article  Google Scholar 

  34. Xu W, Liu L, Guo H et al (2013) Synthesis and electrochemical properties of Li3V2(PO4)3/C cathode material with an improved sol–gel method by changing pH value. Electrochim Acta 113:497–504

    Article  Google Scholar 

  35. Huang S-Z, Cai Y, Jin J et al (2016) Unique walnut-shaped porous MnO2/C nanospheres with enhanced reaction kinetics for lithium storage with high capacity and superior rate capability. J Mater Chem A 4:4264–4272

    Article  Google Scholar 

  36. Lai C, Wei J, Wang Z et al (2015) Li3V2(PO4)3/(SiO2 + C) composite with better stability and electrochemical properties for lithium-ion batteries. Solid State Ion 272:121–126

    Article  Google Scholar 

  37. Zhou J, Sun X, Wang K (2016) Preparation of high-voltage Li3V2(PO4)3 co-coated by carbon and Li7La3Zr2O12 as a stable cathode for lithium-ion batteries. Ceram Int 42:10228–10236

    Article  Google Scholar 

  38. Ferrari S, Lavall RL, Capsoni D et al (2010) Influence of particle size and crystal orientation on the electrochemical behavior of carbon-coated LiFePO4. J Phys Chem C 114:12598–12603

    Article  Google Scholar 

  39. Rui XH, Li C, Liu J et al (2010) The Li3V2(PO4)3/C composites with high-rate capability prepared by a maltose-based sol-gel route. Electrochim Acta 55:6761–6767

    Article  Google Scholar 

  40. Zhang R, Zhang Y, Zhu K et al (2014) Carbon and RuO2 binary surface coating for the Li3V2(PO4)3 cathode material for lithium-ion batteries. ACS Appl Mater Interfaces 6:12523–12530

    Article  Google Scholar 

  41. Cao X, Pan A, Zhang Y et al (2016) Nanorod-nanoflake interconnected LiMnPO4·Li3V2(PO4)3/C composite for high-rate and long-life lithium-ion batteries. ACS Appl Mater Interfaces 8:27632–27641

    Article  Google Scholar 

  42. Han H, Qiu F, Liu Z, Han X (2015) ZrO2-coated Li3V2(PO4)3/C nanocomposite: a high-voltage cathode for rechargeable lithium-ion batteries with remarkable cycling performance. Ceram Int 41:8779–8784

    Article  Google Scholar 

  43. Zhang X, Kühnel R-S, Hu H et al (2015) Going nano with protic ionic liquids—the synthesis of carbon coated Li3V2(PO4)3 nanoparticles encapsulated in a carbon matrix for high power lithium-ion batteries. Nano Energy 12:207–214

    Article  Google Scholar 

  44. Wu Z-S, Ren W, Xu L et al (2011) Doped graphene sheets as anode materials with superhigh rate and large capacity for lithium ion batteries. ACS Nano 5:5463–5471

    Article  Google Scholar 

  45. Chang K, Geng D, Li X et al (2013) Ultrathin MoS2/nitrogen-doped graphene nanosheets with highly reversible lithium storage. Adv Energy Mater 3:839–844

    Article  Google Scholar 

  46. Rajagopalan R, Zhang L, Dou SX, Liu H (2016) Lyophilized 3D lithium vanadium phosphate/reduced graphene oxide electrodes for super stable lithium ion batteries. Adv Energy Mater 6:1501760

    Article  Google Scholar 

  47. Wu C, Guo R, Cai G et al (2016) Ti3SiC2 modified Li3V2(PO4)3/C cathode materials with simultaneous improvement of electronic and ionic conductivities for lithium ion batteries. J Power Sources 306:779–790

    Article  Google Scholar 

  48. Wang Z, He W, Zhang X et al (2017) 3D porous Li3V2(PO4)3/hard carbon composites for improving the rate performance of lithium ion batteries. RSC Adv 7:21848–21855

    Article  Google Scholar 

  49. Ryu I, Kim G, Yoon H et al (2016) Hierarchically nanostructured MnO2 electrodes for pseudocapacitor application. RSC Adv 6:102814–102820

    Article  Google Scholar 

  50. Chen S, Chen L, Li Y et al (2017) Synergistic effects of stabilizing the surface structure and lowering the interface resistance in improving the low-temperature performances of layered lithium-rich materials. ACS Appl Mater Interfaces 9:8641–8648

    Article  Google Scholar 

  51. Kou J, Chen L, Su Y et al (2015) Role of cobalt content in improving the low-temperature performance of layered lithium-rich cathode materials for lithium-ion batteries. ACS Appl Mater Interfaces 7:17910–17918

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the Natural Science Foundation of China under Grant No. 51372165 and Guizhou Province-University Scientific and Technological Cooperation Program under Grant No. [2014] 7003.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruisong Guo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 225 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, B., Sun, D., Guo, R. et al. Amorphous MnO2-modified Li3V2(PO4)3/C as high-performance cathode for LIBs: the double effects of surface coating. J Mater Sci 53, 2709–2724 (2018). https://doi.org/10.1007/s10853-017-1690-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1690-5

Keywords

Navigation