Skip to main content
Log in

Effect of Ho-doping on structural, electrical and magnetic properties of La0.7Sr0.3MnO3 ceramics prepared by Plasma-Activated Sintering

  • Ceramics
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Different components of La0.7−x Ho x Sr0.3MnO3 (LHSMO, x = 0, 0.1, 0.2, 0.3) ceramics were fabricated by Plasma-Activated Sintering (PAS), so as to study the correlation between the contents of Ho3+ and the structural, electrical, magnetic properties. XRD and SEM confirmed that LHSMO ceramics prepared by PAS exhibited high-purity phase and dense microstructure. The measurement of electrical resistivity showed that the resistivity of LHSMO ceramics increased, and the metal–insulator transition temperature decreased with the increasing Ho-doping content. The resistivity data were then fitted using various empirical equations, and the conduction mechanism of LHSMO ceramics was found to be in accord with the electron–magnon scattering process in the low-temperature region and the small polaron hopping model in the high-temperature region. Lastly, we calculated the values of magnetoresistance of the LHSMO ceramics, which increased with increasing Ho-doping content, from 3.5% for x = 0 to 14.6% for x = 0.3. Therefore, the doping of Ho3+ into La0.7Sr0.3MnO3 can effectively enhance the low-field magnetoresistance effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Bowen M, Bibes M, Barthélémy A, Contour JP, Anane A, Lemaı̂tre A, Fert A (2003) Nearly total spin polarization in La2/3Sr1/3MnO3 from tunneling experiments. Appl Phys Lett 82:233–235

    Article  Google Scholar 

  2. Haghiri-Gosnet AM, Renard JP (2003) CMR manganites: physics, thin films and devices. J Phys D Appl Phys 36:R127

    Article  Google Scholar 

  3. Tokura Y, Tomioka Y (1999) Colossal magnetoresistive manganites. J Magn Magn Mater 200:1–23

    Article  Google Scholar 

  4. Hwang HY, Cheong SW, Ong NP, Batlogg B (1996) Spin-polarized intergrain tunneling in La2/3Sr1/3MnO3. Phys Rev Lett 77:2041–2044

    Article  Google Scholar 

  5. Balcells L (1998) Magnetic surface anisotropy and low-temperature magnetoresistance in manganese perovskites. J Phys Condens Matter 10:1883

    Article  Google Scholar 

  6. Tokura Y (2006) Critical features of colossal magnetoresistive manganites. Rep Prog Phys 69:797

    Article  Google Scholar 

  7. Coey JMD, Viret MV, Molnar SV (2009) Mixed-valence manganites. Adv Phys 58:571–697

    Article  Google Scholar 

  8. Salamon MB, Jaime M (2001) The physics of manganites: structure and transport. Rev Mod Phys 73:583

    Article  Google Scholar 

  9. Siwach PK, Singh HK, Srivastava ON (2008) Low field magnetotransport in manganites. J Phys Condens Matter 20:273201

    Article  Google Scholar 

  10. Mitra C, Raychaudhuri P, Dhar SK, Nigam AK, Pinto R, Pattalwar SM (1999) Evolution of transport and magnetic properties with dysprosium doping in La0.7−xDyxSr0.3MnO3 (x = 0–0.4). J Magn Magn Mater 192:130–136

    Article  Google Scholar 

  11. Roy B, Poddar A, Das A (2006) Electrical transport properties and magnetic cluster glass behavior of Nd0.7Sr0.3MnO3 nanoparticles. J Appl Phys 10:104318

    Article  Google Scholar 

  12. Chen Y, Ueland BG, Lynn JW, Bychkov GL, Barilo SN, Mukovskii YM (2008) Polaron formation in the optimally doped ferromagnetic manganites La0.7Ba0.3MnO3 and La0.7Ba0.3MnO3. Phys Rev B 78:212301

    Article  Google Scholar 

  13. Xu LS, Chen LL, Fan JY, Bärner K, Zhang L, Zhu Y, Pi L, Zhang YH, Shi DN (2016) Room-temperature large magnetocaloric effect and critical behavior in La0.6Dy0.1Sr0.3MnO3. Ceram Int 42:8234–8239

    Article  Google Scholar 

  14. Hwang HY, Cheong SW, Radaelli PG, Marezio M, Batlogg B (1995) Lattice effects on the magnetoresistance in doped LaMnO3. Phys Rev Lett 75:914–917

    Article  Google Scholar 

  15. Veverka P, Kaman O, Knížek K, Novák PI, Maryško M, Jirák Z (2016) Magnetic properties of rare-earth-doped La0.7Sr0.3MnO3. J Phys Condens Matter 29:035803

    Article  Google Scholar 

  16. Sun BZ, Zhou SL, Shen T (2013) Effects of Ho-doping on crystal structure and microstructure of La0.7Sr0.3MnO3 ceramics. Mater Sci Forum 745–746:96–101

    Article  Google Scholar 

  17. Raychaudhuri P, Nath TK, Sinha P, Mitra C, Nigam AK, Dhar SK, Pinto R (1997) The effect of holmium doping on the magnetic and transport properties of La0.7-xHoxSr0.3MnO3 (0 ≤ x≤0.4). J Phys Condens Matter 9:10919–10927

    Article  Google Scholar 

  18. Aparnadevi M, Mahendiran R (2013) Electrical detection of spin reorientation transition in ferromagnetic La0.4Sm0.3Sr0.3MnO3. J Appl Phys 113:17D719

    Article  Google Scholar 

  19. Hammouche A (1991) Electrocatalytic properties and nonstoichiometry of the high temperature air electrode La1-xSrxMnO3. J Electrochem Soc 138:1212–1216

    Article  Google Scholar 

  20. Wang SW, Chena LD, Kangb YS, Niinob M, Hiraia T (2000) Effect of plasma activated sintering (PAS) parameters on densification of copper powder. Mater Res Bull 35:619–628

    Article  Google Scholar 

  21. Kamiya A (1998) Effect of plasma activated sintering (PAS) parameters on densification of copper powder. J Mater Sci Lett 17:49–51

    Article  Google Scholar 

  22. Yamazaki K, Risbud SH, Aoyama H, Shoda K (1996) PAS (Plasma Activated Sintering) transient sintering process control for rapid consolidation of powders. J Mater Process Technol 56:955–965

    Article  Google Scholar 

  23. Munir ZA, Anselmitamburini U, Ohyanagi M (2006) The effect of electric field and pressure on the synthesis and consolidation of materials: a review of the spark plasma sintering method. J Mater Sci 41:763–777. doi:10.1088/0953-8984/26/6/064203/meta

    Article  Google Scholar 

  24. Zener C (1951) Interaction between the d-Shells in the transition metals. Phys Rev 81:440–444

    Article  Google Scholar 

  25. Anderson PW, Hasegawa H (1955) Considerations on double exchange. Phys Rev 100:675–681

    Article  Google Scholar 

  26. Zhao S, Yue XJ, Liu X (2017) Tuning room temperature Tp and MR of La1-y(Cay-xSrx)MnO3 polycrystalline ceramics by Sr doping. Ceram Int 43:4594–4598

    Article  Google Scholar 

  27. Millis AJ, Littlewood PB, Shraiman BI (1995) Double exchange alone does not explain the resistivity of La1-xSrxMnO3. Phys Rev Lett 74:5144

    Article  Google Scholar 

  28. Young SL, Chen HZ, Ho YW, Kao HCI (2012) Comparison of the magnetization behaviors in perovskite compounds La0.7-xLnxPb0.3MnO3 (Ln = Pr and Sm). Int J Mod Phys B 19:563–568

    Article  Google Scholar 

  29. Zhao S, Yue XJ, Yan YZ, Liu X (2016) Effects of Ag addition on the structural and electrical properties of La0.67Sr0.33MnO3 ceramics. Adv Appl Ceram 116:180–184

    Article  Google Scholar 

  30. Gennes PGD (2014) Effects of double exchange in magnetic crystals. Phys Rev 118:141–154

    Article  Google Scholar 

  31. Schiffer P, Ramirez AP, Bao W, Cheong SW (1995) Low temperature magnetoresistance and the magnetic phase diagram of La1-xCaxMnO3. Phys Rev Lett 75:3336

    Article  Google Scholar 

  32. Snyder GJ, Hiskes R, Dicarolis SA, Beasley MR, Geballe TH (1996) Low temperature magnetoresistance and the magnetic phase diagram of La1-xCaxMnO3. Phys Rev B 53:14434–14444

    Article  Google Scholar 

  33. Yue XJ, Zhan YH, Liu X, Gu G, Wang QS, Yin XP (2015) Enhanced electrical properties of La0.7(Ca0.2Sr0.1)MnO3 polycrystalline composites with Ag addition. J Low Temp Phys 180:356–362

    Article  Google Scholar 

  34. Banerjee A, Pal S, Rozenberg E, Chaudhuri BK (2001) Adiabatic and non-adiabatic small-polaron hopping conduction in La1-xPbxMnO3+δ (0.0 ≤ x≤0.5)-type oxides above the metal–semiconductor transition. J Phys Condens Matter 13:9489–9504

    Article  Google Scholar 

  35. Yin XP, Liu X, Yan YZ, Chen QM (2014) Preparation of La0.67Ca0.33MnO3: Agx polycrystalline by sol–gel method. J Sol Gel Sci Technol 70:361–365

    Article  Google Scholar 

  36. Jung WH (1998) Evaluation of Mott’s parameters for hopping conduction in La0.67Ca0.33MnO3 above Tc. J Mater Sci Lett 17:1317–1319

    Article  Google Scholar 

  37. Khan W, Naqvi AH, Gupta M, Husain S, Kumar R (2011) Small polaron hopping conduction mechanism in Fe doped LaMnO3. J Chem Phys 135:054501

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by National Natural Science Foundation of China (51272195, 51521001), 111 project (B13035), International Science and Technology Cooperation Project of Hubei Province (2016AHB008) and Nature Science Foundation of Hubei Province (2015CFB724, 2016CFA006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. B. Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H.X., Wang, C.B., Wu, L. et al. Effect of Ho-doping on structural, electrical and magnetic properties of La0.7Sr0.3MnO3 ceramics prepared by Plasma-Activated Sintering. J Mater Sci 53, 2375–2382 (2018). https://doi.org/10.1007/s10853-017-1684-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1684-3

Keywords

Navigation