Skip to main content
Log in

Theoretical investigations of group IV alloys in the Lonsdaleite phase

  • Metals
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The structural, elastic, elastic anisotropic, thermodynamic and electronic properties of Lonsdaleite C, Si and Ge and Lonsdaleite C–Si and Si–Ge alloys are investigated using density functional theory. The elastic anisotropy calculations show that the Lonsdaleite C0.25Si0.75 alloy has the greatest anisotropy in Poisson’s ratio, shear modulus, bulk modulus and Young’s modulus. Through the mixing of carbon and silicon and silicon and germanium at certain proportions, Lonsdaleite C0.25Si0.75 with metallic properties and Lonsdaleite Si0.25Ge0.75 with a direct band gap are obtained, where Lonsdaleite Si0.25Ge0.75 is a narrow direct band gap semiconductor with a band gap of 0.76 eV at the HSE06 hybrid functional level. The minimum thermal conductivity calculations on Lonsdaleite C–Si and Si–Ge alloys show that the minimum thermal conductivities of Lonsdaleite C0.75Si0.25 and Lonsdaleite C0.5Si0.5 are greater than that of diamond C, and the minimum thermal conductivities of Lonsdaleite C–Si and Si–Ge alloys in different directions are also investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Ziambaras ES (2003) Theory for structure and bulk modulus determination. Phys Rev B 68:064112

    Article  Google Scholar 

  2. Itzhaki L, Altus E, Basch H, Hoz S (2005) Harder than diamond: determining the cross-sectional area and Young’s modulus of molecular rods. Angew Chem Int Ed 44:7432–7435

    Article  Google Scholar 

  3. Weidner DJ, Wang YB, Vaughan MT (1994) Strength of diamond. Science 266:419–422

    Article  Google Scholar 

  4. Jaglinski T, Kochmann D, Stone D, Lakes RS (2007) Composite materials with viscoelastic stiffness greater than diamond. Science 315:620–622

    Article  Google Scholar 

  5. Xing MJ, Li BH, Yu ZT, Chen Q (2015) Structural, elastic, and electronic properties of a new phase of carbon. Commun Theor Phys 64:237–243

    Article  Google Scholar 

  6. Wei Q, Zhang MG, Yan HY, Lin ZZ, Zhu XM (2014) Structural, electronic and mechanical properties of Imma-carbon. EPL 107:27007

    Article  Google Scholar 

  7. Wei Q, Zhang Q, Yan HY, Zhang MG (2017) A new superhard carbon allotrope: tetragonal C64. J Mater Sci 52:2385–2391. doi:10.1007/s10853-016-0564-6

    Article  Google Scholar 

  8. Xing MJ, Li BH, Yu ZT, Chen Q (2015) C2/m-carbon: structural, mechanical, and electronic properties. J Mater Sci 50:7104–7114

    Article  Google Scholar 

  9. Mujica A, Pickard CJ, Needs RJ (2015) Low-energy tetrahedral polymorphs of carbon, silicon, and germanium. Phys Rev B 91:214104

    Article  Google Scholar 

  10. Xing MJ, Li BH, Yu ZT, Chen Q (2016) A Reinvestigation of a superhard tetragonal sp3 carbon allotrope. Materials 9:484

    Article  Google Scholar 

  11. Zhang MG, Wei Q, Yan HY, Zhao YR, Wang H (2014) A novel superhard tetragonal carbon mononitride. J Phys Chem C 118:3202–3208

    Article  Google Scholar 

  12. Wei Q, Zhang Q, Zhang MG (2016) Crystal structures and mechanical properties of Ca2C at high pressure. Materials 9:570

    Article  Google Scholar 

  13. Fan QY, Chai CC, Wei Q, Yang YT (2016) Two novel C3N4 phases: structural, mechanical and electronic properties. Materials 9:427

    Article  Google Scholar 

  14. Manyali GS, Warmbier R, Quandt A, Lowther JE (2013) Ab initio study of elastic properties of super hard and graphitic structures of C3N4. Comput Mater Sci 69:299–303

    Article  Google Scholar 

  15. Wang EG (1997) Research on carbon nitrides. Prog Mater Sci 41:241–298

    Article  Google Scholar 

  16. Dubinchuk VT, Simakov SK, Pechnikov VA (2010) Lonsdaleite in diamond-bearing metamorphic rocks of the Kokchetav Massif. Dokl Earth Sci 430:40

    Article  Google Scholar 

  17. Pan ZC, Sun H, Zhang Y, Chen CF (2010) Harder than diamond: superior indentation strength of wurtzite BN and lonsdaleite. Phys Rev Lett 102:055503

    Article  Google Scholar 

  18. Chen H, Zhang WY, Wang ZL (2004) Comparative studies on photonic band structures of diamond and hexagonal diamond using the multiple scattering method. J Phys: Condens Matter 16:741–748

    Google Scholar 

  19. Wang SQ, Ye HQ (2003) First-principles study on the lonsdaleite phases of C, Si and Ge. J Phys: Condens Matter 15:L197–L202

    Google Scholar 

  20. De A, Pryor CY (2014) Electronic structure and optical properties of Si, Ge and diamond in the lonsdaleite phase. J Phys Condens Matter 26:045801

    Article  Google Scholar 

  21. Yoshiasa A, Murai Y, Ohtaka O, Katsura T (2003) Detailed structures of hexagonal diamond (Lonsdaleite) and wurtzite-type BN. Jpn J Appl Phys 42:1694–1704

    Article  Google Scholar 

  22. Blank VD, Kulnitskiy BA, Nuzhdin AA (2011) Lonsdaleite formation in process of reverse phase transition diamond–graphite. Diam Relat Mater 20:1315–1318

    Article  Google Scholar 

  23. Chen PS, Fan ST, Lan HS, Liu CW (2017) Band calculation of lonsdaleite Ge. J Phys D Appl Phys 50:015107

    Article  Google Scholar 

  24. Wang SQ, Ye HQ (2003) Ab initio elastic constants for the lonsdaleite phases of C, Si and Ge. J Phys: Condens Matter 15:5307–5314

    Google Scholar 

  25. Kustov EF, Novotortsev VM (2010) Structure and optical properties of nanocrystals and quantum dots with diamond, lonsdaleite, sphalerite and wurtzite structures. J Comput Theor Nanosci 7:1531–1545

    Article  Google Scholar 

  26. Li QK, Sun Y, Li ZY, Zhou Y (2011) Lonsdaleite—A material stronger and stiffer than diamond. Scr Mater 65:229–232

    Article  Google Scholar 

  27. Pan ZC, Sun H, Zhang Y, Chen CF (2009) Harder than diamond: superior indentation strength of wurtzite BN and lonsdaleite. Phys Rev Lett 102:055503

    Article  Google Scholar 

  28. Shumilova TG, Mayer E, Isaenko SI (2011) Natural monocrystalline lonsdaleite. Dokl. Earth Sci 441:1552–1554

    Google Scholar 

  29. Clark SJ, Segall MD, Pickard CJ, Hasnip PJ, Probert MIJ, Refson K, Payne MC (2005) First principles methods using CASTEP. Z Kristallogr 220:567–570

    Google Scholar 

  30. Pfrommer BG, Côté M, Louie SG, Cohen ML (1997) Relaxation of crystals with the quasi-newton method. J Comput Phys 131:233–240

    Article  Google Scholar 

  31. Vanderbilt D (1990) Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys Rev B 41:7892R–7895R

    Article  Google Scholar 

  32. Monkhorst HJ, Pack JD (1976) Special points for Brillouin-zone integrations. Phys Rev B 13:5188–5192

    Article  Google Scholar 

  33. Ceperley DM, Alder BJ (1980) Ground state of the electron gas by a stochastic method. Phys Rev Lett 45:566–568

    Article  Google Scholar 

  34. Perdew JP, Zunger A (1981) Self-interaction correction to density-functional approximations for many-electron systems. Phys Rev B 23:5048–5097

    Article  Google Scholar 

  35. Perdew JP, Ruzsinszky A, Csonka GI, Vydrov OA, Scuseria GE, Constantin LA, Zhou XL, Burke K (2009) Restoring the density-gradient expansion for exchange in solids and surfaces. Phys Rev Lett 102:039902

    Article  Google Scholar 

  36. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868

    Article  Google Scholar 

  37. Heyd J, Scuseria GE, Ernzerhof MJ (2003) Hybrid functionals based on a screened Coulomb potential. J Chem Phys 118:8207–8215

    Article  Google Scholar 

  38. Heyd J, Scuseria GE, Ernzerhof MJ (2006) Erratum: hybrid functionals based on a screened Coulomb potential. J Chem Phys 124:219906

    Article  Google Scholar 

  39. Wu ZJ, Zhao EJ, Xiang HP, Hao XF, Liu XJ, Meng J (2007) Crystal structures and elastic properties of superhard IrN2 and IrN3 from first principles. Phys Rev B 76:054115

    Article  Google Scholar 

  40. Voigt W (1928) Lehrburch der Kristallphysik, Teubner. Johnson Reprint Corp, Leipzig

    Google Scholar 

  41. Reuss A (1929) Berechnung der Fließgrenze von mischkristallen auf grund der plastizitätsbedingungfür Einkristalle. Angew Z Math Mech 9:49–58

    Article  Google Scholar 

  42. Hill R (1952) The elastic behaviour of a crystalline aggregate. Proc Phys Soc Lond Sect A 65:349

    Article  Google Scholar 

  43. Xing MJ, Li BH, Yu ZT, Chen Q (2016) Monoclinic C2/m-20 carbon: a novel superhard sp 3 carbon allotrope. RSC Adv 6:32740–32745

    Article  Google Scholar 

  44. Marmier A, Lethbridge ZAD, Walton RI, Smith CW, Parker SC, Evans KE (2010) ElAM: a computer program for the analysis and representation of anisotropic elastic properties. Comput Phys Commun 181:2102–2115

    Article  Google Scholar 

  45. Fan QY, Wei Q, Chai CC, Yan HY, Zhang MG, Lin ZZ, Zhang ZX, Zhang JQ, Zhang DY (2015) Structural, mechanical, and electronic properties of P3m1-BCN. J Phys Chem Solids 79:89–96

    Article  Google Scholar 

  46. Fan QY, Wei Q, Yan HY, Zhang MG, Zhang ZX, Zhang JQ, Zhang DY (2014) Elastic and electronic properties of Pbca-BN: first-principles calculations. Comput Mater Sci 85:80–87

    Article  Google Scholar 

  47. Ranganathan SI, Ostoja-Starzewski M (2008) Universal elastic anisotropy index. Phys Rev Lett 101:055504

    Article  Google Scholar 

  48. Anderson OL (1963) A simplified method for calculating the debye temperature from elastic constants. J Phys Chem Solids 24:909–917

    Article  Google Scholar 

  49. Anderson O L. Physical Acoustics, Academic Press, New York, vol. III (part B), 1965

  50. Panda KB, Ravi KS (2006) Determination of elastic constants of titanium diboride (TiB) from first principles using FLAPW implementation of the density functional theory. Comput Mater Sci 35:134–150

    Article  Google Scholar 

  51. Duan YH, Sun Y, Peng MJ, Zhou SG (2014) Anisotropic elastic properties of the Ca–Pb compounds. J Alloys Compd 595:14–21

    Article  Google Scholar 

  52. Cahill DG, Watson KS, Pohl RO (1992) Lower limit to the thermal conductivity of disordered crystals. Phys Rev B 46:6131–6140

    Article  Google Scholar 

  53. Fan QY, Chai CC, Wei Q, Yang YT (2017) Thermodynamic, elastic, elastic anisotropy and minimum thermal conductivity of β-GaN under high temperature. Chin J Phys 55:400–411

    Article  Google Scholar 

  54. Bundy FB, Kasper JS (1967) Hexagonal Diamond—a new form of carbon. J Chem Phys 46:3437–3446

    Article  Google Scholar 

  55. Pizzagalli L (2014) Stability and mobility of screw dislocations in 4H, 2H and 3C silicon carbide. Acta Mater 78:236–244

    Article  Google Scholar 

  56. Sarasamak K, Limpijumnong S, Lambrecht WRL (2010) Pressure-dependent elastic constants and sound velocities of wurtzite SiC, GaN, InN, ZnO and CdSe and their relation to the high-pressure phase transition: a first-principles study. Phys Rev B 82:035201

    Article  Google Scholar 

  57. Schulz H, Thiemann KH (1979) Structure parameters and polarity of the wurtzite type compounds Sic—2H and ZnO. Solid State Commun 32:783–785

    Article  Google Scholar 

  58. Kackell P, Wenzien B, Bechstedt F (1994) Electronic properties of cubic and hexagonal SiC polytypes from ab initio calculations. Phys Rev B 50:10761–10768

    Article  Google Scholar 

  59. Schulz K, Thiemann KH (1979) Structure parameters and polarity of the wurtzite type compounds SiC—2H and ZnO. Solid State Commun 32:783–785

    Article  Google Scholar 

  60. Cerva H (1991) High-resolution electron microscopy of diamond hexagonal silicon in low pressure chemical vapor deposited polycrystalline silicon. J Mater Res 6:2324–2336

    Article  Google Scholar 

  61. Xiao SQ, Pirouz P (1992) On diamond-hexagonal germanium. J Mater Res 7:1406–1412

    Article  Google Scholar 

  62. Petrescu ML (2004) Boron nitride theoretical hardness compared to carbon polymorphs. Diam Relat Mater 13:1848–1853

    Article  Google Scholar 

  63. Lide D R, 73rd ed. (Chemical Rubber, Boca Raton, FL, 1994)

  64. Grimsditch M, Zouboulis ES, Polian A (1994) Elastic constants of boron nitride. J Appl Phys 76:832–834

    Article  Google Scholar 

  65. Gomez-Abal R, Li X, Scheffler M, Ambrosch-Draxl C (2008) Influence of the core-valence interaction and of the pseudopotential approximation on the electron self-energy in semiconductors. Phys Rev Lett 101:106404

    Article  Google Scholar 

  66. Siethoff H, Ahiborn K (1995) The dependence of the Debye temperature on the elastic constants. Phys Status Solidi B 190:179–191

    Article  Google Scholar 

  67. Zywietz A, Karch K, Bechstedt F (1996) Influence of polytypism on thermal properties of silicon carbide. Phys Rev B 54:1791–1798

    Article  Google Scholar 

  68. Madelung O (2004) Semiconductors: data handbook, 3rd edn. Springer, Berlin

    Book  Google Scholar 

  69. Wybourne MN (1999) Properties of crystalline silicon, EMIS Datareviews Series No. 20 edited by R. Hull. INSPEC, London, P165

  70. Slack GA, Glassbrenner CJ (1960) Thermal conductivity of germanium from 3 °K to 1020 °K. Phys Rev 120:782–789

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 61474089), the Natural Science Basic Research plan of Shaanxi Province of China (No. 2016JM1026) and the Open Fund of Key Laboratory of Complex Electromagnetic Environment Science and Technology, China Academy of Engineering Physics (No. 2015-0214. XY.K).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingyang Fan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, Q., Chai, C., Wei, Q. et al. Theoretical investigations of group IV alloys in the Lonsdaleite phase. J Mater Sci 53, 2785–2801 (2018). https://doi.org/10.1007/s10853-017-1681-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1681-6

Keywords

Navigation