Skip to main content
Log in

Ferroelectric electrocatalysts: a new class of materials for oxygen evolution reaction with synergistic effect of ferroelectric polarization

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

We exploit the role of the remnant polarization to improve the electrocatalytic performance of ferroelectric perovskite. We report cost-effective, noble metal-free, ferroelectric electrocatalyst Bi0.5Na0.5TiO3 and the effect of remnant polarization on oxygen evolution reaction involved in alkaline fuel cells. The forward poling decreases the Tafel slope from 85 mv/decade to 39 mv/decade and also increases the mass activity by threefold. The effect of polarization on flat-band potential and the Schottky barrier between electrode and electrolyte contributes to enhanced electrochemical activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Cook TR, Dogutan DK, Reece SY, Surendranath Y, Teets TS, Nocera DG (2010) Solar energy supply and storage for the legacy and nonlegacy worlds. Chem Rev 110(11):6474–6502

    Article  Google Scholar 

  2. Service RF (2009) Transportation research. Hydrogen cars: fad or the future? Science (New York, NY) 324(5932):1257–1259

    Article  Google Scholar 

  3. Lewis NS, Nocera DG (2006) Powering the planet: chemical challenges in solar energy utilization. Proc Natl Acad Sci 103(43):15729–15735

    Article  Google Scholar 

  4. Turner JA (2004) Sustainable hydrogen production. Science 305(5686):972–974

    Article  Google Scholar 

  5. Mallouk TE (2013) Water electrolysis: divide and conquer. Nat Chem 5(5):362–363

    Article  Google Scholar 

  6. Gray HB (2009) Powering the planet with solar fuel. Nat Chem 1(1):7

    Article  Google Scholar 

  7. Smith RD, Prévot MS, Fagan RD et al (2013) Photochemical route for accessing amorphous metal oxide materials for water oxidation catalysis. Science 340(6128):60–63

    Article  Google Scholar 

  8. Kanan MW, Nocera DG (2008) In situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and Co2+. Science 321(5892):1072–1075

    Article  Google Scholar 

  9. Yeo BS, Bell AT (2011) Enhanced activity of gold-supported cobalt oxide for the electrochemical evolution of oxygen. J Am Chem Soc 133(14):5587–5593

    Article  Google Scholar 

  10. Trasatti S (1980) Electrodes of conductive metallic oxides, vol 2. Elsevier Scientific Software, Amsterdam

    Google Scholar 

  11. Lee Y, Suntivich J, May KJ, Perry EE, Shao-Horn Y (2012) Synthesis and activities of rutile IrO2 and RuO2 nanoparticles for oxygen evolution in acid and alkaline solutions. J Phys Chem Lett 3(3):399–404

    Article  Google Scholar 

  12. Davidson C, Kissel G, Srinivasan S (1982) Electrode kinetics of the oxygen evolution reaction at NiCo2O4 from 30% KOH.: dependence on temperature. J Electroanal Chem Interfacial Electrochem 132:129–135

    Article  Google Scholar 

  13. Suntivich J, May KJ, Gasteiger HA, Goodenough JB, Shao-Horn Y (2011) A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles. Science 334(6061):1383–1385

    Article  Google Scholar 

  14. Guo Y, Tong Y, Chen P et al (2015) Engineering the electronic state of a perovskite electrocatalyst for synergistically enhanced oxygen evolution reaction. Adv Mater 27(39):5989–5994

    Article  Google Scholar 

  15. Guerrini E, Chen H, Trasatti S (2007) Oxygen evolution on aged IrO x/Ti electrodes in alkaline solutions. J Solid State Electr 11(7):939–945

    Article  Google Scholar 

  16. Shao Z, Haile SM (2004) A high-performance cathode for the next generation of solid-oxide fuel cells. Nature 431(7005):170–173

    Article  Google Scholar 

  17. Zhu Y, Sunarso J, Zhou W, Jiang S, Shao Z (2014) High-performance SrNb 0.1 Co 0.9− x Fe x O 3− δ perovskite cathodes for low-temperature solid oxide fuel cells. J Mater Chem A 2(37):15454–15462

    Article  Google Scholar 

  18. Han X, Hu Y, Yang J, Cheng F, Chen J (2014) Porous perovskite CaMnO3 as an electrocatalyst for rechargeable Li–O2 batteries. Chem Commun 50(12):1497–1499

    Article  Google Scholar 

  19. Xu JJ, Xu D, Wang ZL, Wang HG, Zhang LL, Zhang XB (2013) Synthesis of perovskite‐based porous La0. 75Sr0. 25MnO3 nanotubes as a highly efficient electrocatalyst for rechargeable lithium–oxygen batteries. Angew Chem Int Edit 52(14):3887–3890

    Article  Google Scholar 

  20. Grimaud A, May KJ, Carlton CE et al (2013) Double perovskites as a family of highly active catalysts for oxygen evolution in alkaline solution. Nat Commun 4:2439–2445

    Article  Google Scholar 

  21. Zhou W, Sunarso J (2013) Enhancing bi-functional electrocatalytic activity of perovskite by temperature shock: a case study of LaNiO3− δ . J Phys Chem Lett 4(17):2982–2988

    Article  Google Scholar 

  22. Zhao Y, Xu L, Mai L et al (2012) Hierarchical mesoporous perovskite La0. 5Sr0. 5CoO2. 91 nanowires with ultrahigh capacity for Li-air batteries. Proc Natl Acad Sci 109(48):19569–19574

    Article  Google Scholar 

  23. Suntivich J, Gasteiger HA, Yabuuchi N, Nakanishi H, Goodenough JB, Shao-Horn Y (2011) Design principles for oxygen-reduction activity on perovskite oxide catalysts for fuel cells and metal–air batteries. Nat Chem 3(7):546–550

    Article  Google Scholar 

  24. Matsumoto Y, Yoneyama H, Tamura H (1977) Catalytic activity for electrochemical reduction of oxygen of lanthanum nickel oxide and related oxides. J Electroanal Chem Interfacial Electrochem 79(2):319–326

    Article  Google Scholar 

  25. Jung JI, Jeong HY, Kim MG, Nam G, Park J, Cho J (2015) Fabrication of Ba0. 5Sr0. 5Co0. 8Fe0. 2O3–δ catalysts with enhanced electrochemical performance by removing an inherent heterogeneous surface film layer. Adv Mater 27(2):266–271

    Article  Google Scholar 

  26. Yang X, Su X, Shen M et al (2012) Enhancement of photocurrent in ferroelectric films via the incorporation of narrow bandgap nanoparticles. Adv Mater 24(9):1202–1208

    Article  Google Scholar 

  27. Kakekhani A, Ismail-Beigi S (2016) Polarization-driven catalysis via ferroelectric oxide surfaces. Phys Chem Chem Phys 18(29):19676–19695

    Article  Google Scholar 

  28. Cui Y, Briscoe J, Dunn S (2013) Effect of ferroelectricity on solar-light-driven photocatalytic activity of BaTiO3-x influence on the carrier separation and Stern layer formation. Chem Mater 25(21):4215–4223

    Article  Google Scholar 

  29. Watanabe Y, Okano M, Masuda A (2001) Surface conduction on insulating BaTiO3 crystal suggesting an intrinsic surface electron layer. Phys Rev Lett 86(2):332–335

    Article  Google Scholar 

  30. Yang W-C, Rodriguez BJ, Gruverman A, Nemanich R (2004) Polarization-dependent electron affinity of LiNbO3 surfaces. Appl Phys Lett 85:2316–2318

    Article  Google Scholar 

  31. Sones CL, Mailis S, Brocklesby WS, Eason RW, Owen JR (2002) Differential etch rates in z-cut LiNbO3 for variable HF/HNO3 concentrations. J Mater Chem 12(2):295–298

    Article  Google Scholar 

  32. Park S, Lee CW, Kang M-G et al (2014) A ferroelectric photocatalyst for enhancing hydrogen evolution: polarized particulate suspension. Phys Chem Chem Phys 16(22):10408–10413

    Article  Google Scholar 

  33. Garra J, Vohs J, Bonnell D (2009) The effect of ferroelectric polarization on the interaction of water and methanol with the surface of LiNbO 3 (0001). Surf Sci 603(8):1106–1114

    Article  Google Scholar 

  34. Kakekhani A, Ismail-Beigi S, Altman EI (2015) Ferroelectrics: A pathway to switchable surface chemistry and catalysis. Surf Sci 650:302–316

    Article  Google Scholar 

  35. Yuan Y, Reece TJ, Sharma P et al (2011) Efficiency enhancement in organic solar cells with ferroelectric polymers. Nat Mater 10(4):296–302

    Article  Google Scholar 

  36. Garcia V, Bibes M, Bocher L et al (2010) Ferroelectric control of spin polarization. Science 327(5969):1106–1110

    Article  Google Scholar 

  37. Morris MR, Pendlebury SR, Hong J, Dunn S, Durrant JR (2016) Effect of internal electric fields on charge carrier dynamics in a ferroelectric material for solar energy conversion. Adv Mater 28:7123–7128

    Article  Google Scholar 

  38. Parmar K, Negi N (2017) Tailoring structural and electrical properties of A-site non-stoichiometric Na0. 5Bi0. 5TiO3 ceramic at different sintering temperature. Adv Appl Ceram 116(1):8–18

    Article  Google Scholar 

  39. Li M, Zhang H, Cook SN et al (2015) Dramatic influence of A-site nonstoichiometry on the electrical conductivity and conduction mechanisms in the perovskite oxide Bi0. 5Na0. 5TiO3. Chem Mater 27(2):629–634

    Article  Google Scholar 

  40. Fancher CM, Blendell JE, Bowman KJ (2013) Poling effect on d 33 in textured Bi0. 5Na0. 5TiO3-based materials. Scr Mater 68(7):443–446

    Article  Google Scholar 

  41. Sung Y, Kim J, Cho J et al (2010) Effects of Na nonstoichiometry in (Bi0.5Na0.5+ x) TiO3 ceramics. Appl Phys Lett 96(2):022901–022903

    Article  Google Scholar 

  42. Suchanicz J, Roleder K, Kania A, Hańaderek J (1988) Electrostrictive strain and pyroeffect in the region of phase coexistence in Na0. 5Bi0. 5TiO3. Ferroelectrics 77(1):107–110

    Article  Google Scholar 

  43. Kushwaha HS, Vaish R (2015) Enhanced visible light photocatalytic activity of curcumin-sensitized perovskite Bi0. 5Na0. 5TiO3 for rhodamine 6G Degradation. Int J Appl Ceram Tech 13:333–339

    Article  Google Scholar 

  44. Singh L et al (2016) Comparative dielectric and ferroelectric characteristics of Bi0. 5Na0. 5TiO3, CaCu3Ti4O12, and 0.5 Bi0. 5Na0. 5TiO3–0.5 CaCu3Ti4O12 Electroceramics. J Electron Mater 45(6):2662–2672

    Article  Google Scholar 

  45. Dawson JA, Chen H, Tanaka I (2015) Crystal structure, defect chemistry and oxygen ion transport of the ferroelectric perovskite, Na0.5 Bi0.5 TiO3: insights from first-principles calculations. J Mater Chem A 3(32):16574–16582

    Article  Google Scholar 

  46. Jeong I-K, Sung YS, Song TK, Kim MH, Llobet A (2015) Structural evolution of bismuth sodium titanate induced by A-site non-stoichiometry: neutron powder diffraction studies. J Korean Phys Soc 67(9):1583–1587

    Article  Google Scholar 

  47. Inoue Y, Sato K, Sato K (1989) Photovoltaic and photocatalytic behaviour of a ferroelectric semiconductor, lead strontium zirconate titanate, with a polarization axis perpendicular to the surface. J Chem Soc Faraday Trans 1 85(7):1765–1774

    Article  Google Scholar 

  48. Ping Y, Goddard WA III, Galli GA (2015) Energetics and solvation effects at the photoanode/catalyst interface: ohmic contact versus Schottky barrier. J Am Chem Soc 137(16):5264–5267

    Article  Google Scholar 

  49. Choi T, Lee S, Choi Y, Kiryukhin V, Cheong S-W (2009) Switchable ferroelectric diode and photovoltaic effect in BiFeO3. Science 324(5923):63–66

    Article  Google Scholar 

  50. Burbure NV, Salvador PA, Rohrer GS (2010) Photochemical reactivity of titania films on BaTiO3 substrates: origin of spatial selectivity. Chem Mater 22(21):5823–5830

    Article  Google Scholar 

Download references

Acknowledgements

One of the authors (Rahul Vaish) acknowledges the support from the Indian National Science Academy (INSA) under Young Scientist Project Scheme (SP/YSP/102/2014/1065).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rahul Vaish.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 698 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kushwaha, H.S., Halder, A. & Vaish, R. Ferroelectric electrocatalysts: a new class of materials for oxygen evolution reaction with synergistic effect of ferroelectric polarization. J Mater Sci 53, 1414–1423 (2018). https://doi.org/10.1007/s10853-017-1611-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1611-7

Keywords

Navigation