Skip to main content
Log in

Magnetic, optical, dielectric, and sintering properties of nano-crystalline BaFe0.5Nb0.5O3 synthesized by a polymerization method

  • Ceramics
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A one-pot polymerization method using citric acid and glucose for the synthesis of nano-crystalline BaFe0.5Nb0.5O3 is described. Phase evolution and the development of the crystallite size during decomposition of the (Ba,Fe,Nb)-gel were examined up to 1100 °C. Calcination at 850 °C of the gel leads to a phase-pure nano-crystalline BaFe0.5Nb0.5O3 powder with a crystallite size of 28 nm. The shrinkage of compacted powders starts at 900 °C. Dense ceramic bodies (relative density ≥ 90%) can be obtained either after conventional sintering above 1250 °C for 1 h or after two-step sintering at 1200 °C. Depending on the sintering regime, the ceramics have average grain sizes between 0.3 and 52 µm. The optical band gap of the nano-sized powder is 2.75(4) eV and decreases to 2.59(2) eV after sintering. Magnetic measurements of ceramics reveal a Néel temperature of about 23 K. A weak spontaneous magnetization might be due to the presence of a secondary phase not detectable by XRD. Dielectric measurements show that the permittivity values increase with decreasing frequency and rising temperature. The highest permittivity values of 10.6 × 104 (RT, 1 kHz) were reached after sintering at 1350 °C for 1 h. Tan δ values of all samples show a maximum at 1–2 MHz at RT. The frequency dependence of the impedance can be well described using a single RC-circuit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figrue 1
Figrue 2
Figrue 3
Figrue 4
Figrue 5
Figrue 6
Figrue 7
Figrue 8
Figrue 9
Figrue 10
Figrue 11
Figrue 12

Similar content being viewed by others

References

  1. Homes CC, Vogt T, Shapiro SM, Wakimoto S, Ramirez AP (2001) Optical response of high-dielectric-constant perovskite-related oxide. Science 293:673–676

    Article  Google Scholar 

  2. Chung SY, Kim ID, Kang SJ (2004) Strong nonlinear current–voltage behaviour in perovskite-derivative calcium copper titanate. Nat Mater 3:774–778

    Article  Google Scholar 

  3. Haertling GH (1999) Ferroelectric ceramics: history and technology. J Am Ceram Soc 82:797–818

    Article  Google Scholar 

  4. Ke S, Fan H, Huang H (2009) Dielectric relaxation in A2FeNbO6 (A = Ba, Sr, and Ca) perovskite ceramics. J Electroceram 22:252–256

    Article  Google Scholar 

  5. Patel PK, Yadav KL, Singh H, Yadav AK (2014) Origin of giant dielectric constant and magnetodielectric study in Ba(Fe0.5Nb0.5)O3 nanoceramics. J Alloys Compd 591:224–229

    Article  Google Scholar 

  6. Wang Z, Chen XM, Ni L, Liu XQ (2007) Dielectric abnormities of complex perovskite Ba(Fe1/2Nb1/2)O3 ceramics over broad temperature and frequency range. Appl Phys Lett 90:022904

    Article  Google Scholar 

  7. Ke S, Lin P, Huang H, Fan H, Zeng X (2013) Mean-Field Approach to Dielectric Relaxation in Giant Dielectric Constant Perovskite Ceramics, J Ceram 2013:795827

  8. Bochenek D, Niemiec P, Szafraniak-Wiza I, Adamczyk M, Skulski R (2015) Preparation and dielectric properties of the lead-free BaFe1/2Nb1/2O3 ceramics obtained from mechanically triggered powder. Eur Phys J B 88:277

    Article  Google Scholar 

  9. Kantha P, Pisitpipathsin N, Pengpat K, Rujijanagul G, Guo R, Bhalla AS (2011) Microstructure and electrical properties of BaFe0.5Nb0.5O3 doped with GeO2 (1–5 wt%). Ferroelectrics 425:27–38

    Article  Google Scholar 

  10. Charoenthai N, Traiphol R (2011) Progress in the synthesis of Ba(Fe0.5Nb0.5)O3 ceramics: a versatile co-precipitation method. J Ceram Process Res 12:191–194

    Google Scholar 

  11. Raevski IP, Kuropatkina SA, Kubrin SP, Raevskaya SI, Titov VV, Sarychev DA, Malitskaya MA, Bogatin AS, Zakharchenko IN (2009) Dielectric and Mössbauer studies of high-permittivity BaFe1/2Nb1/2O3 ceramics with cubic and monoclinic perovskite structures. Ferroelectrics 379:48–54

    Article  Google Scholar 

  12. Saha S, Sinha TP (2002) Low-temperature scaling behavior of BaFe0.5Nb0.5O3. Phys Rev B 65:134103

    Article  Google Scholar 

  13. Chung CY, Chang YH, Chen GJ, Chai YL (2005) Preparation, structure and ferroelectric properties of Ba(Fe0.5Nb0.5)O3 powders by sol–gel method. J Cryst Growth 284:100–107

    Article  Google Scholar 

  14. Tezuka K, Henmi K, Hinutsa Y (2000) Magnetic susceptibilities and mössbauer spectra of perovskites A2FeNbO6 (A = Sr, Ba). J Solid State Chem 154:591–597

    Article  Google Scholar 

  15. Galasso F, Darby W (1962) Ordering of the octahedrally coordinated cation position in the perovskite structure. J Phys Chem 66:131–132

    Article  Google Scholar 

  16. Bhagat S, Prasad K (2010) Structural and impedance spectroscopy analysis of Ba(Fe1/2Nb1/2)O3 ceramic. Phys Status Solidi A 207:1232–1239

    Article  Google Scholar 

  17. Kar SK, Kumar P (2013) Permittivity and modulus spectroscopic study of BaFe0.5Nb0.5O3 ceramics. Process Appl Ceram 7:181–187

    Article  Google Scholar 

  18. Kar SK, Kumar P (2013) Structural, morphological and dielectric study of Ba(FeNb)0.5O3 ceramics synthesized by microwave processing technique. J Phys Chem Solids 74:1408–1413

    Article  Google Scholar 

  19. Raevski IP, Prosandeev SA, Bogatin AS, Malitskaya MA, Jastrabik L (2003) High dielectric permittivity in AFe1/2B1/2O3 nonferroelectric perovskite ceramics (A = Ba, Sr, Ca; B = Nb, Ta, Sb). J Appl Phys 93:4130–4136

    Article  Google Scholar 

  20. Voorhoeve RJH, Trimble LE, Khattak CP (1974) Extrapolation of perovskite-like catalysts: Ba2CoWO6 and Ba2FeNbO3 in NO reduction and CO oxidation. Mater Res Bull 9:655–666

    Article  Google Scholar 

  21. Chung WC, Pan KL, Lee HM, Chang MB (2014) Dry reforming of methane with dielectric barrier discharge and ferroelectric packed-bed reactors. Energy Fuels 28:7621–7631

    Article  Google Scholar 

  22. Pan KL, Chung WC, Chang MB (2014) Dry reforming of CH4 with CO2 to generate syngas by combined plasma catalysis. IEEE Trans Plasma Sci 42:3809–3818

    Article  Google Scholar 

  23. Rama N, Phillip JB, Opel M, Chandrasekaran K, Sankaranarayanan V, Gross R, Rao MSR (2004) Study of magnetic properties of A2B´NbO6 (A = Ba, Sr, BaSr; and B´ = Fe and Mn) double perovskites. J Appl Phys 95:7528–7530

    Article  Google Scholar 

  24. Intatha U, Eitssayeam S, Tunkasiri T (2008) Giant dielectric behavior of BaFe0.5Nb0.5O3 perovskite ceramic. Int J Mod Phys 22:4717–4723

    Article  Google Scholar 

  25. Sun XH, Wang CC, Wang GJ, Lei CM, Li T, Mei JY, Cui YM (2012) Relationship between the dielectric properties and the conductivity of Ba2FeNbO6. J Electroceram 29:187–191

    Article  Google Scholar 

  26. Battle PD, Gibb TC, Herod AJ, Kim SH, Munns PH (1995) Investigation of magnetic frustration in A2FeMO6, (A = Ca, Sr, Ba; M = Nb, Ta, Sb) by magnetometry and mossbauer spectroscopy. J Mater Chem 5:865–870

    Article  Google Scholar 

  27. Wang Z, Wen YF, Li HJ, Fang MR, Wang C, Pu YP (2016) Excellent stability and low dielectric loss of Ba(Fe0.5Nb0.5)O3 synthesized by a solution precipitation method. J Alloys Compd 656:431–438

    Article  Google Scholar 

  28. Charoenthai N, Traiphol R, Rujijanagul G (2008) Microwave synthesis of barium iron niobate and dielectric properties. Mater Lett 62:4446–4448

    Article  Google Scholar 

  29. Jha AK, Prasad K (2014) Green synthesis and characterization of BaFe0.5Nb0.5O3 nanoparticles. J Chin Adv Mater Sci 2:294–302

    Article  Google Scholar 

  30. Program WinXPOW v2.11, Stoe & Cie GmbH, Darmstadt, 2004

  31. Rodriguez-Carvajal J (1993) Recent advances in magnetic structure determination neutron powder diffraction. Phys B 192:55–69

    Article  Google Scholar 

  32. Köferstein R (2014) Synthesis, phase evolution and properties of phase-pure nanocrystalline BiFeO3 prepared by a starch-based combustion method. J Alloys Compd 590:324–330

    Article  Google Scholar 

  33. Deshpande K, Mukasyan A, Varma A (2004) Direct synthesis of iron oxide nanopowders by the combustion approach: reaction mechanism and properties. Chem Mater 16:4896–4904

    Article  Google Scholar 

  34. Hirata Y, Hara A, Aksay IA (2009) Thermodynamics of densification of powder compact. Ceram Int 35:2667–2674

    Article  Google Scholar 

  35. Köferstein R, Walther T, Hesse D, Ebbinghaus SG (2013) Preparation and characterization of nanosized magnesium ferrite powders by a starch-gel process and corresponding ceramics. J Mater Sci 48:6509–6518. doi:10.1007/s10853-013-7447-x

    Article  Google Scholar 

  36. Eitssayeam S, Intatha U, Pengpat K, Tunkasiri T (2006) Preparation and characterization of barium iron niobate (BaFe0.5Nb0.5O3) ceramics. Curr Appl Phys 6:316–318

    Article  Google Scholar 

  37. Mendelson MI (1969) Average grain size in polycrystalline ceramics. J Am Ceram Soc 52:443–446

    Article  Google Scholar 

  38. Kubelka P, Munk F (1931) Ein beitrag zur optik der farbanstriche. Z Techn Phys 11:593–601

    Google Scholar 

  39. Kortüm G, Vogel J (1958) Die Theorie der diffusen Reflexion von Licht an pulverförmigen Stoffen. Z Phys Chem 18:110–122

    Article  Google Scholar 

  40. Patel PK, Yadav KL, Kaur G (2014) Reduced dielectric loss in Ba0.95Sr0.05(Fe0.5Nb0.5)O3 thin film grown by pulsed laser deposition. RSC Adv 4:28056–28061

    Article  Google Scholar 

  41. Köferstein R, Buttlar T, Ebbinghaus SG (2014) Investigations on Bi25FeO40 powders synthesized by hydrothermal and combustion-like processes. J Solid State Chem 217:50–56

    Article  Google Scholar 

  42. Kar SK, Swain S, Kumar P (2015) High dielectric constant and low optical band gap studies of La-modified Ba(Fe0.5Nb0.5)O3 ceramics. Mater Chem Phys 155:171–177

    Article  Google Scholar 

  43. Yu J, Tang S, Zhai L, Shi Y, Du Y (2009) Synthesis and magnetic properties of single-crystalline BaFe12O19 nanoparticles. Phys B 404:4253–4256

    Article  Google Scholar 

  44. Shafie MSE, Hashim M, Ismail I, Kanagesan S, Fadzidah MI, Idza IR, Hajalilou A, Sabbaghizadeh R (2014) Magnetic M-H loops family characteristics in the microstructure evolution of BaFe12O19. J Mater Sci Mater Electron 25:3787–3794

    Article  Google Scholar 

  45. Raevski IP, Titov VV, Malitskaya MA, Eremin EV, Kubrin SP, Blazhevich AV, Chen H, Chou CC, Raevskaya SI, Zakharchenko IN, Sarychev DA, Shevtsova SI (2014) Studies of ferroelectric and magnetic phase transitions in multiferroic PbFe0.5Ta0.5O3–PbTiO3 solid solution ceramics. J Mater Sci 49:6459–6466. doi:10.1080/00150193.2015.995009

    Article  Google Scholar 

  46. Puri M, Bahel S, Raevski IP, Narang SB (2016) Structural, dielectric and magnetic properties of (Pb1-xCax)(Fe0.5Nb0.5)O3 solid solution ceramics. J Magnet Magnet Mater 407:195–200

    Article  Google Scholar 

  47. Amonpattaratkit P, Jantaratana P, Ananta S (2015) Influences of PZT addition on phase formation and magnetic properties of perovskite Pb(Fe0.5Nb0.5)O3-based ceramics. J Magnet Magnet Mater 389:95–100

    Article  Google Scholar 

  48. Intatha U, Eitssayeam S, Pengpat K, MacKenzie KJD, Tunkasiri T (2007) Dielectric properties of low temperature sintered LiF doped BaFe0.5Nb0.5O3. Mater Lett 61:196–200

    Article  Google Scholar 

  49. Oehler F, Langhammer HT, Ebbinghaus SG (2017) Preparation and dielectric properties of CaTaO2N and SrNbO2N ceramics. J Eur Ceram Soc 37:2129–2136

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to Dr. E. Pippel (Max Planck Institute of Microstructure Physics, Halle/Saale) for the TEM images. Financial support by the German Research Foundation within the Collaborative Research Centre (SFB 762) Functionality of Oxide Interfaces is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Köferstein.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 407 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Köferstein, R., Oehler, F. & Ebbinghaus, S.G. Magnetic, optical, dielectric, and sintering properties of nano-crystalline BaFe0.5Nb0.5O3 synthesized by a polymerization method. J Mater Sci 53, 1024–1034 (2018). https://doi.org/10.1007/s10853-017-1609-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1609-1

Keywords

Navigation