Skip to main content
Log in

Hybrids of Fe3O4/CoSe2 as efficient electrocatalysts for oxygen reduction reaction

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Here we demonstrated two different hydrothermal methods for synthesizing Fe3O4/CoSe2 hybrids with different weight ratios of Fe3O4 and CoSe2. The synthesized materials were characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction and X-ray photoelectron spectroscopy. And the electrochemical properties were obtained by linear sweep voltammetry, chronoamperometry and electrochemical impedance spectroscopy. For the first method, the obtained catalyst with loading 20% Fe3O4 on CoSe2 (C20a) exhibits the highest oxygen reduction reaction activity. While for the second method, the obtained catalyst with loading 30% Fe3O4 on CoSe2 (C30b) exhibits the highest oxygen reduction reaction activity, with an onset potential of 0.775 V, a half-wave potential of 0.600 V, and Tafel slope of 65 mV decade−1 in O2-saturated 0.5 M H2SO4. Which are better than those of C20a (0.753, 0.567 V and 67 mV decade−1), CoSe2 (0.708, 0.560 V and 66 mV decade−1) and Fe3O4 (0.700, 0.556 V and 79 mV decade−1). More importantly, C30b shows much higher stability and better methanol, ethanol and ethylene glycol tolerance than other prepared materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Liang YY, Li YG, Wang HL, Zhou JG, Wang J, Regier T, Dai HJ (2011) Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nat Mater 10:780–786

    Article  Google Scholar 

  2. Tan YM, Xu CF, Chen GX, Fang XL, Zheng NF, Xie QJ (2012) Facile synthesis of manganese-oxide-containing mesoporous nitrogen-doped carbon for efficient oxygen reduction. Adv Funct Mater 22:4584–4591

    Article  Google Scholar 

  3. Wang D, Xin HL, Hovden R, Wang H, Yu Y, Muller DA, DiSalvo FJ, Abruna HD (2013) Structurally ordered intermetallic platinum–cobalt core–shell nanoparticles with enhanced activity and stability as oxygen reduction electrocatalysts. Nat Mater 12:81–87

    Article  Google Scholar 

  4. Susac D, Zhu L, Teo M, Sode A, Wong KC, Wong PC, Parsons RR, Bizzotto D, Mitchell KAR, Campbell SA (2007) Characterization of FeS2-based thin films as model catalysts for the oxygen reduction reaction. J Phys Chem C 111:18715–18723

    Article  Google Scholar 

  5. Liu Q, Jin J, Zhang J (2013) NiCo2S4@graphene as a bifunctional electrocatalyst for oxygen reduction and evolution reactions. ACS Appl Mater Interfaces 5:5002–5008

    Article  Google Scholar 

  6. Faber MS, Dziedzic R, Lukowski MA, Kaiser NS, Ding Q, Jin S (2014) High-performance electrocatalysis using metallic cobalt pyrite (CoS2) micro- and nanostructures. J Am Chem Soc 136:10053–10061

    Article  Google Scholar 

  7. Liu Y, Cheng H, Lyu M, Fan S, Liu Q, Zhang W, Zhi Y, Wang C, Xiao C, Wei S, Ye B, Xie Y (2014) Low overpotential in vacancy-rich ultrathin CoSe2 nanosheets for water oxidation. J Am Chem Soc 136:15670–15675

    Article  Google Scholar 

  8. Shen M, Ruan C, Chen Y, Jiang C, Ai K, Lu L (2015) Covalent entrapment of cobalt-iron sulfides in N-doped mesoporous carbon: extraordinary bifunctional electrocatalysts for oxygen reduction and evolution reactions. ACS Appl Mater Interfaces 7:1207–1218

    Article  Google Scholar 

  9. Gao M, Jiang J, Yu S (2012) Solution-based synthesis and design of late transition metal chalcogenide materials for oxygen reduction reaction (ORR). Small 8:13–27

    Article  Google Scholar 

  10. Chen B, Li R, Ma G, Guo X, Zhu Y, Xia Y (2015) Cobalt sulfide/N, S Co-doped porous carbon core-shell nanocomposites as superior bifunctional electrocatalysts for oxygen reduction and evolution reactions. Nanoscale 7:20674–20684

    Article  Google Scholar 

  11. Hu H, Han L, Yu MZ, Wang ZY, Lou XW (2016) Metal-organic- framework engaged formation of Co nanoparticle-embedded carbon@Co9S8 double-shelled nanocages for efficient oxygen reduction. Energy Environ Sci 9:107–111

    Article  Google Scholar 

  12. Zhu L, Susac D, Teo M, Wong KC, Wong PC, Parsons RR, Bizzotto D, Mitchell KAR, Campbell SA (2008) Investigation of CoS2-based thin films as model catalysts for the oxygen reduction reaction. J Catal 258:235–242

    Article  Google Scholar 

  13. Gao M, Gao Q, Jiang J, Cui C, Yao W, Yu S (2011) A methanol-tolerant Pt/CoSe2 nanobelt cathode catalyst for direct methanol fuel cells. Angew Chem Int Ed 50:4905–4908

    Article  Google Scholar 

  14. Zhu L, Teo M, Wong PC, Narita I, Ernst F, Mitchell KAR, Campbell SA (2010) Synthesis, characterization of a CoSe2 catalyst for the oxygen reduction reaction. Appl Catal A386:157–165

    Article  Google Scholar 

  15. Feng Y, He T, Alonso-Vante N (2008) In situ free-surfactant synthesis and ORR-electrochemistry of carbon-supported Co3S4 and CoSe2 nanoparticles. Chem Mater 20:26–28

    Article  Google Scholar 

  16. Nekooi P, Akbari M, Amini MK (2010) CoSe nanoparticles prepared by the microwave-assisted polyol method as an alcohol and formic acid tolerant oxygen reduction catalyst. Int J Hydrogen Energy 35:6392–6398

    Article  Google Scholar 

  17. Feng Y, He T, Alonso-Vante N (2010) Carbon-supported CoSe2 nanoparticles for oxygen reduction reaction in acid medium. Fuel Cells 10:77–83

    Google Scholar 

  18. Zhang J, Sasaki K, Sutter E, Adzic RR (2007) Stabilization of platinum oxygen-reduction electrocatalysts using gold clusters. Science 315:220–222

    Article  Google Scholar 

  19. Haruta M (1997) Size- and support-dependency in the catalysis of gold. Catal Today 36:153–166

    Article  Google Scholar 

  20. Gao M, Gao Q, Jiang J, Cui C, Yao W, Yu S (2011) A methanol-tolerant Pt/CoSe2 nanobelt cathode catalyst for direct methanol fuel cells. Angew Chem 123:5007–5010

    Article  Google Scholar 

  21. Wang C, Daimon H, Sun S (2009) Dumbbell-like Pt-Fe3O4 nanoparticles and their enhanced catalysis for oxygen reduction reaction. Nano Lett 9:1493–1496

    Article  Google Scholar 

  22. Mu CH, Qi HX, Song YQ, Liu ZP, Ji LX, Deng JG, Liao YB, Scarpa F (2016) One-pot synthesis of Nanosheet-assembled hierarchical MoSe2/CoSe2 microcages for the enhanced performance of electrocatalytic hydrogen evolution. RSC Adv 6:23–30

    Article  Google Scholar 

  23. Zheng YR, Gao MR, Gao Q, Li HH, Xu J, Wu ZY, Yu SH (2015) An efficient CeO2/CoSe2 nanobelt composite for electrochemical water oxidation. Small 11:182–188

    Article  Google Scholar 

  24. Li K, Zhang J, Wu R, Yu Y, Zhang B (2016) Anchoring CoO domains on CoSe2 nanobelts as bifunctional electrocatalysts for overall water splitting in neutral media. Adv Sci 3:110–115

    Google Scholar 

  25. Yeo BS, Bell AT (2011) Enhanced activity of gold-supported cobalt oxide for the electrochemical evolution of oxygen. J Am Chem Soc 133:5587–5593

    Article  Google Scholar 

  26. Huang D, Luo Y, Li S, Wang M, Shen Y (2015) Hybrid of Fe@Fe3O4 core-shell nanoparticle and iron–nitrogen–doped carbon material as an efficient electrocatalyst for oxygen reduction reaction. Electrochim Acta 174:933–939

    Article  Google Scholar 

  27. Liang Y, Li Y, Wang H, Dai H (2013) Strongly coupled inorganic/nanocarbon hybrid materials for advanced electrocatalysis. J Am Chem Soc 135:2013–2036

    Article  Google Scholar 

  28. Chen Z, Lu J, Ai Y, Ji Y, Adschiri T, Wan L (2016) Ruthenium/graphene-like layered carbon composite as an efficient hydrogen evolution reaction electrocatalyst. ACS Appl Mater Interfaces 8:35132–35137

    Article  Google Scholar 

  29. Suryanto BHR, Chen S, Duan J, Zhao C (2016) Hydrothermally driven tansformation of oxygen functional groups at multiwall carbon nanotubes for improved electrocatalytic applications. ACS Appl Mater Interfaces 8:35513–35522

    Article  Google Scholar 

  30. Langlet M, Labeau M, Bochu B, Joubert JC (1986) Preparation of thin films in the system iron oxides (γ-Fe2O3-Fe3O4) for recording media by spray pyrolysis of organometallic solutions using an ultrasonic pump. IEEE Trans Magn 22:151–156

    Article  Google Scholar 

  31. Tahmasebi E, Yamini Y (2014) Polythiophene-coated Fe3O4 nanoparticles as a selective adsorbent for magnetic solid-phase extraction of silver (I), gold(III), copper(II), and palladium(II). Microchim Acta 181:543–551

    Article  Google Scholar 

  32. Tian Q, Hu J, Zhu Y, Zou R, Chen Z, Yang S, Li R, Su Q, Han Y, Liu X (2013) Sub-10 nm Fe3O4@Cu2-xS core-shell nanoparticles for dual-modal imaging and photothermal therapy. J Am Chem Soc 135:8571–8577

    Article  Google Scholar 

  33. Dombrovskis JK, Prestel C, Palmqvist AEC (2014) Optimization of fuel cell membrane electrode assemblies for transition metal ion-chelating ordered mesoporous carbon cathode catalysts. Apl Mater 2:121102–121112

    Article  Google Scholar 

  34. Shu C, Yang X, Chen Y, Fang Y, Zhou Y, Liu Y (2016) Nano-Fe3O4 grown on porous carbon and its effect on the oxygen reduction reaction for DMFCs with a polymer fiber membrane. RSV Adv 6:37012–37017

    Article  Google Scholar 

  35. Sebastian D, Suelves I, Moliner R, Lazaro MJ (2010) The effect of the functionalization of carbon nanofibers on their electronic conductivity. Carbon 48:4421–4431

    Article  Google Scholar 

  36. Harraz FA (2013) Synthesis and surface properties of magnetite (Fe3O4) nanoparticles infiltrated into porous silicon template. Appl Surf Sci 287:203–210

    Article  Google Scholar 

  37. Wu Z, Yang S, Sun Y, Parvez K, Feng X, Muellen K (2012) 3D Nitrogen-doped graphene aerogel-supported Fe3O4 nanoparticles as efficient electrocatalysts for the oxygen reduction reaction. J Am Chem Soc 134:9082–9085

    Article  Google Scholar 

  38. Zhang X, Wang X, Le L, Ma A, Lin S (2015) Electrochemical growth of octahedral Fe3O4 with high activity and stability toward the oxygen reduction reaction. J Mater Chem A 3:19273–19276

    Article  Google Scholar 

  39. Su J, Cao M, Ren L, Hu C (2011) Fe3O4-graphene nanocomposites with improved lithium storage and magnetism properties. J Phys Chem C 115:14469–14477

    Article  Google Scholar 

  40. Yu BB, Wu WQ, Jin JY, Wu HM, Wang SF, Xia QH (2016) Facile synthesis of Co-based selenides for oxygen reduction reaction in acidic medium. Int J Hydrogen Energy 41:8863–8870

    Article  Google Scholar 

  41. Yang X, Zhang X, Ma Y, Huang Y, Wang Y, Chen Y (2009) Super paramagnetic graphene oxide-Fe3O4 nanoparticles hybrid for controlled targeted drug carriers. J Mater Chem 19:2710–2714

    Article  Google Scholar 

  42. Hu F, Yang H, Wang C, Zhang Y, Lu H, Wang Q (2017) Co–N-doped mesoporous carbon hollow spheres as highly efficient electrocatalysts for oxygen reduction reaction. Small. doi:10.1002/smll.201602507

    Google Scholar 

  43. Barros WRP, Wei Q, Zhang G, Sun S, Lanza MRV, Tavares AC (2015) Oxygen reduction to hydrogen peroxide on Fe3O4 nanoparticles supported on printex carbon and grapheme. Electrochim Acta 162:263–270

    Article  Google Scholar 

  44. Lu J, Bo X, Wang H, Guo L (2013) Nitrogen-doped ordered mesoporous carbons synthesized from honey as metal-free catalyst for oxygen reduction reaction. Electrochim Acta 108:10–16

    Article  Google Scholar 

  45. Su Y, Jiang H, Zhu Y, Yang X, Shen J, Zou W, Chen J, Li C (2014) Enriched graphitic N-doped carbon-supported Fe3O4 nanoparticles as efficient electrocatalysts for oxygen reduction reaction. J Mater Chem A2:7281–7287

    Article  Google Scholar 

  46. Niu W, Zhu R, Hua Y, Zeng H, Cosnier S, Zhang X, Shan D (2016) One-pot synthesis of nitrogen-rich carbon dots decorated grapheme oxide as metal-free electrocatalyst for oxygen reduction reaction. Carbon 109:402–410

    Article  Google Scholar 

  47. Liang J, Zheng Y, Chen J, Liu J, Hulicova-Jurcakova D, Jaroniec M, Qiao SZ (2012) Facile oxygen reduction on a three-dimensionally ordered macroporous graphitic C3N4/carbon composite electrocatalyst. Angew Chem Int Ed 51:3892–3896

    Article  Google Scholar 

  48. Zhang S, Shao Y, Yin G, Lin Y (2009) Stabilization of platinum nanoparticle electrocatalysts for oxygen reduction using poly (diallyldimethylammonium chloride). J Mater Chem 19:7995–8001

    Article  Google Scholar 

  49. Wang W, Si J, Li J, Wang Q, Chen S (2016) Hybrid of Fe3O4 nanorods and N-doped carbon as efficient oxygen reduction electrocatalyst. Int J Hydrogen Energy 41:16858–16864

    Article  Google Scholar 

  50. Dai L, Xue Y, Qu L, Choi HJ, Baek JB (2015) Metal-free catalysts for oxygen reduction reaction. Chem Rev 115:4823–4892

    Article  Google Scholar 

  51. Zheng Y, Jiao Y, Jaroniec M, Jin Y, Qiao S (2012) Nanostructured metal-free electrochemical catalysts for highly efficient oxygen reduction. Small 8:3550–3566

    Article  Google Scholar 

  52. Shao M, Chang Q, Dodelet JP, Chenitz R (2016) Recent advances in electrocatalysts for oxygen reduction reaction. Chem Rev 116:3594–3657

    Article  Google Scholar 

  53. Higgins D, Zamani P, Yu A, Chen Z (2016) The application of graphene and its composites in oxygen reduction electrocatalysis: a perspective and review ofrecent progress. Energy Environ Sci 9:357–390

    Article  Google Scholar 

  54. Favaro M, Ferrighi L, Fazio G, Colazzo L, Valentin CD, Durante C, Sedona F, Gennaro A, Agnoli S, Granozzi G (2015) Single and multiple doping in grapheme quantum dots: unraveling the origin of selectivity in the oxygen reduction reaction. ACS Catal 5:129–144

    Article  Google Scholar 

  55. Ma G, Jia R, Zhao J, Wang Z, Song C, Jia S, Zhu Z (2011) Nitrogen-doped hollow carbon nanoparticles with excellen toxygen reduction performances and their electrocatalytic kinetics. J Phys Chem C115:25148–25154

    Google Scholar 

  56. Damjanovic A, Genshaw MA (1970) Dependence of the kinetics of oxygen dissolution at platinum on the conditions for adsorption of reaction intermediates. Electrochim Acta 15:1281–1283

    Article  Google Scholar 

  57. Gu W, Hu L, Hong W, Jia X, Li J, Wang E (2016) Noble-metal-free Co3S4-S/G porous hybrids as an efficient electrocatalyst for oxygen reduction reaction. Chem Sci 7:4167–4173

    Article  Google Scholar 

  58. Tan Y, Xu C, Chen G, Zheng N, Xie QA (2012) Graphene–platinum nanoparticles-ionic liquid composite catalyst for methanol-tolerant oxygen reduction reaction. Energy Environ Sci 5:6923–6927

    Article  Google Scholar 

  59. Lee K, Zhang L, Zhang JJ (2007) Ternary non-noble metal chalcogenide (W–Co–Se) as electrocatalyst for oxygen reduction reaction. Electrochem Commun 9:1704–1708

    Article  Google Scholar 

  60. Yang Y, Zeng H, Huo W, Zhang Y (2017) Direct electrochemistry and catalytic function on oxygen reduction reaction of electrodes based on two kinds of magnetic nano-particles with immobilized laccase molecules. J Inorg Organomet Polym Mater 27:201–214

    Article  Google Scholar 

  61. Liu X, Hu W (2016) Iron oxide/oxyhydroxide decorated graphene oxides for oxygen reduction reaction catalysis: a comparison study. RSC Adv 6:29848–29854

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge financial support from the National Natural Science Foundation of China through a project entitled “The synthesis of Pt-M/C nanoparticles and construction of non-enzymatic electrochemical biosensor” (21205030), and by the National Nature Science Foundation of China (51402096), and by Hubei Key Laboratory of Pollutant Analysis & Reuse Technology (PA160104), and from the Natural Science Fund for Creative Research Groups of Hubei Province of China through a project entitled “Controllable Synthesis and Application of Nano-/microsized Functional Materials” (2014CFA015).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Huimin Wu or Feng Wang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 10226 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Y., Feng, C., Wu, H. et al. Hybrids of Fe3O4/CoSe2 as efficient electrocatalysts for oxygen reduction reaction. J Mater Sci 53, 1123–1134 (2018). https://doi.org/10.1007/s10853-017-1603-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1603-7

Keywords

Navigation