Skip to main content
Log in

Effect of annealing temperature on the luminescence of Ce1−x PO4: Tb 3+ x nanocrystals: A novel theoretical model and experimental verification

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Terbium-doped cerium phosphate nanocrystals are successfully synthesized through microwave-assisted sol–gel method and are annealed at different temperatures for detailed investigation on structural and optical properties. The structural characterization carried out using X-ray diffraction analysis confirmed that all the samples are crystallized in monoclinic structure having chemical formula CePO4 and revealed the thermal stability of the synthesized samples. A novel theoretical model is proposed to investigate the influence of annealing temperature on Tb3+ by analyzing I4/I3—annealing temperature plot in which two regions are distinguished as above and below the crystallization temperature. A generalized equation derived in terms of rate constants for I4/I3 helps to frame four distinct cases describing the role of different radiative and nonradiative relaxations in the Tb3+ luminescence from 5D3 and 5D4 levels. The subsequent evaluation of each case described the role of defects, cross-relaxation and multiphonon relaxation in the variation of I4/I3 with annealing temperature and verified by the experimentally observed data with the help of TEM, FESEM, TGA and decay analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Xianghong H, Mingyun G, Ning L, Jianhua S, Tongming S (2010) Synthesis and luminescence characteristics of K2Bi(PO4)(MO4):Eu3+ (M = Mo, W) red-emitting phosphor for white LEDs. J Alloys Compd 492:452–455

    Article  Google Scholar 

  2. Hoppe HA (2009) Recent developments in the field of inorganic phosphors. Angew Chem Int Ed 48:3572–3582

    Article  Google Scholar 

  3. Ran P, Li C, Lili S, Qiang S (2009) A novel blue-emitting long-lasting proyphosphate phosphor Sr2P2O7:Eu2+, Y3+. J Phys Chem Solid 70:303–306

    Article  Google Scholar 

  4. Xiaojuan W, Mingyuan G (2006) A facile route for preparing rhabdophane rare earth phosphate nanorods. J Mater Chem 16:1360–1365

    Article  Google Scholar 

  5. Zheng H, Gao D, Fu Z, Wang E, Lei Y, Tuan Y, Cui M (2011) Fluorescence enhancement of Ln3+ doped nanoparticles. J Lumin 131:423–428

    Article  Google Scholar 

  6. Yang M, Hongpeng Y, Yanhua S, Yeju H, Guang J, Kai L, Yuhua Z, Lihui Z, Hongjie Z (2009) Synthesis and luminescence properties of sheaf like TbPO4 hierarchical architectures with different phase structures. J Phys Chem C 113:20173–20177

    Article  Google Scholar 

  7. Mei Y, Hongpeng Y, Youlong L, Xu J, Fan L, Liming D, Yong L (2014) Morphology controllable and highly luminescent monoclinic LaPO4:Eu3+ microspheres. J Alloys Compd 582:603–608

    Article  Google Scholar 

  8. Vineet K, Sukhvir S, Kotnala RK, Santa C (2014) GdPO4:Eu3+ nanoparticles with intense orange red emission suitable for solar spectrum conversion and their multi functionality. J Lumin 146:486–491

    Article  Google Scholar 

  9. Li F, Wang M, Mi C, Yi K, Xu S (2009) Polyol-mediated synthesis and luminescence properties of CePO4:Tb3+nanospindles. J Alloys Compd 486:137–139

    Article  Google Scholar 

  10. Fen Z, Stanislaus SW (2010) Ambient large-scale template-mediated synthesis of high-aspect ratio single-crystalline, chemically doped rare-earth phosphate nanowires for bioimaging. ACS Nano 4:99–112

    Article  Google Scholar 

  11. Rajesh K, Mukundan P, Krishna PP, Nair VR, Warrier KGK (2004) High-surface-area nanocrystalline cerium phosphate through aqueous sol–gel route. Chem Mater 16:2700–2705

    Article  Google Scholar 

  12. Sisira S, Dinu A, Kukku T, Vimal G, Kamal PM, Biju PR, Unnikrishnan NV, Cyriac J (2017) Microstructural characterization and optical properties of green emitting hexagonal and monoclinic CePO4:Tb3 nanocrystals. Mater Res Exp 4:025010–025019

    Article  Google Scholar 

  13. Ekthammathat N, Thongtem T, Anukorn P, Thongtem S (2011) Microwave-assisted synthesis of CePO4 nanorod phosphor with violet emission. Rare Met 30:572–576

    Article  Google Scholar 

  14. Reena O, Rajmuhon SN (2013) Photoluminescence behaviours of CePO4: Tb3+, M (M = Li+, Ba2+, Bi3+) nanoparticles synthesized in different reaction medium. Prog Nanotech Nanomater 2:26–34

    Google Scholar 

  15. Li Q, Yam VWW (2007) Redox luminescence switch based on energy transfer in CePO4:Tb3+ nanowires. Angew Chem Int Ed 119:3556–3559

    Article  Google Scholar 

  16. Palma-Ramírez D, Domínguez-Crespo MA, Torres-Huerta AM, Dorantes-Rosales H, Ramírez-Meneses E, Rodríguez E (2015) Microwave-assisted hydrothermal synthesis of CePO4 nanostructures: correlation between the structural and optical properties. J Alloys Compd 643:5209–5218

    Article  Google Scholar 

  17. Fang YP, Xu AW, Song RQ, Zhang HX, You LP, Jimmy CY, Liu HQ (2003) Systematic synthesis and characterization of single-crystal lanthanide orthophosphate nanowires. J Am Chem Soc 125:16025–16034

    Article  Google Scholar 

  18. Zhiyao H, Lili W, Lian H, Chai R, Zhang C, Cheng Z, Lin J (2009) Preparation and luminescence properties of Ce3+ and/or Tb3+ doped LaPO4 nanofibers and microbelts by electrospinning. J Solid State Chem 182:698–708

    Article  Google Scholar 

  19. Li YC, Chang YH, Chang YS, Lin YJ, Laing CH (2007) Luminescence and energy transfer properties of Gd3+ and Tb3+ in LaAlGe2O7. J Phys Chem C 111:10682–10688

    Article  Google Scholar 

  20. Wang N, Zhang S, Zhang X (2014) Preparation of LaPO4:Ce3+, Tb3+ nanophosphors by mixed co-precipitation. Ceram Int 40:16253–16258

    Article  Google Scholar 

  21. Benz F, Yang M, Ye W, Strunk HP (2012) Luminescence intensity and dopant concentration in AlN:Tb. J Lumin 132:1493–1496

    Article  Google Scholar 

  22. Ricci PC, Salis M, Fortrin E, Anedda A (2010) A kinetics model for Tb3+ recombinations in low doped Tb: Lu1.8Y0.2SiO5 crystals. J Appl Phys 108:043512–043516

    Article  Google Scholar 

  23. Wada N, Kojima K (2013) Decay behavior of Tb3+ green fluorescence in borate glasses. Opt Mater 35:1908–1913

    Article  Google Scholar 

  24. Godlewska P, Bandrowski S, Macalik L, Lisiecki R, Ryba R, Szczygiel I, Ropuszynska PR, Hanuza J (2012) Spectroscopic properties of Nd3+ ion in several types of phosphate materials. Opt Mater 34:1023–1028

    Article  Google Scholar 

  25. Tachihante M, Zambon D, Arbus A, Zahir M, Sadel A, Cousseins JC (1993) Optical properties of trivalent terbium doped calcium fluorapatite. Mater Res Bull 28:605–613

    Article  Google Scholar 

  26. Annmary KA, Unnikrishnan NV, Reji P (2014) Role of surface states and defects in the ultrafast nonlinear optical properties of CuS quantum dots. APL Mater 2:076104–076110

    Article  Google Scholar 

  27. Feng H, Zhang H, Banfield JF (2003) The role of oriented attachment crystal growth in hydrothermal coarsening of nanocrystalline ZnS. J Phys Chem B 107:10470–10475

    Article  Google Scholar 

  28. Berdowski PAM, Lammers MJJ, Blasse G (1985) 5D35D4 cross relaxation of Tb3+ in α-GdOF. Chem Phys Lett 113:387–390

    Article  Google Scholar 

  29. Meert KW, Joos JJ, Dirk P, Smet PF (2016) Investigation of the quenching mechanisms of Tb3+ doped scheelites. J Lumin 173:263–273

    Article  Google Scholar 

  30. Patra A (2004) Effect of crystal structure and concentration on luminescence in Er3+:ZrO2 nanocrystals. Chem Phys Lett 387:35–39

    Article  Google Scholar 

  31. Weber MJ (1971) Luminescence decay by energy migration and transfer: observation of diffusion-limited relaxation. Phys Rev B 4:2932–2939

    Article  Google Scholar 

  32. Schubert EF (2006) Light-emitting diodes, 2nd edn. Cambridge University Press, Cambridge

    Book  Google Scholar 

  33. Dakin JP, Brown RGW (2006) Handbook of optoelectronics, vol 1. Taylor and Francis Groups, New York

    Google Scholar 

  34. Mitsuo F (1999) In: Chang K (ed) Optical semiconductor devices. Wiley, New York

    Google Scholar 

  35. George SD, Rajesh K, Warrier KGK, Radhakrishnan P, Nampoori VPN, Vallabhan CPG (2010) Thermal characterization of nanocrystalline porous CePO4 ceramics. Philos Mag 90:717–729

    Article  Google Scholar 

  36. Pankratov V, Popov AI, Chernov SA, Zharkouskaya A, Feldmann C (2010) Mechanism for energy transfer processes between Ce3+ and Tb3+ in LaPO4: Ce, Tb nanocrystals by time resolved luminescence spectroscopy. Phys Stat Solidi B 247:2252–2257

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to University Grants Commission, Govt. of India, and Department of Science and Technology, Govt. of India, for the financial assistance through SAP-DRS (No. F.530/12/DRS/2009 (SAP-1)) and DST-PURSE (SR/S9/Z-23/2010/22 (C,G)) programs, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cyriac Joseph.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sisira, S., Alexander, D., Thomas, K. et al. Effect of annealing temperature on the luminescence of Ce1−x PO4: Tb 3+ x nanocrystals: A novel theoretical model and experimental verification. J Mater Sci 53, 1380–1394 (2018). https://doi.org/10.1007/s10853-017-1600-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1600-x

Keywords

Navigation