Skip to main content
Log in

Investigating the role of different reducing agents, molar ratios, and synthesis medium over the formation of ZnO nanostructures and their photo-catalytic activity

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

ZnO nanostructures with divergent morphologies were synthesized by a facile chemical approach using various solvents and reducing agents. The synthesized nanostructures were characterized by XRD, electron microscopic techniques and fluorescence spectroscopy. The microstructural analysis shows that different morphologies of ZnO can be formed when suitable reducing agents (RAs) and solvents are used with variation in the molar ratio (β) of zinc precursor to RAs. The morphologies observed are spindles, flowers, nanoassemblies, rods and hexagonal hollow tubes. The size of spindle-shaped ZnO nanostructures varies from 1 to 5 μm, and nanoassemblies are of around 150 ± 20 nm. Each nanoassembly is the aggregation of individual nanoparticles of sizes around 4–5 nm. The optical study shows that these ZnO nanostructures have various defect concentrations and surface properties. Furthermore, the alterations and transformations in the physical and chemical properties of ZnO nanostructures significantly influenced the photo-catalytic degradation of methylene blue (MB) dye under solar irradiation. A complete degradation of MB is observed within 130 and 60 min when treated with ZnO of suitable morphology under UV and solar light radiation. This variation in time may be attributed to the availability of higher specific surface area, large amount of defects and anisotropy in morphology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Scheme 1
Figure 6

Similar content being viewed by others

References

  1. Bhuyan B, Paul B, Purkayastha DD, Dhar SS, Behera S (2016) Facile synthesis and characterization of zinc oxide nanoparticles and studies of their catalytic activity towards ultrasound-assisted degradation of metronidazole. Mater Lett 168:158–162. doi:10.1016/j.matlet.2016.01.024

    Article  Google Scholar 

  2. Drmosh QA, Yamani ZH (2016) Synthesis, characterization, and hydrogen gas sensing properties of AuNs-catalyzed ZnO sputtered thin films. Appl Surf Sci 375:57–64. doi:10.1016/j.apsusc.2016.02.238

    Article  Google Scholar 

  3. Kaur M, Kailasaganapathi S, Ramgir N (2017) Gas dependent sensing mechanism in ZnO nanobelt sensor. Appl Surf Sci 394:258–266. doi:10.1016/j.apsusc.2016.10.085

    Article  Google Scholar 

  4. Sehgal P, Narula AK (2016) Quantum dot cosensitized solar cell based on PMOT@CdSe@ZnO core shell nanostructures with dual emission. J Solid State Chem 233:428–437. doi:10.1016/j.jssc.2015.11.013

    Article  Google Scholar 

  5. Singh S, Barick KC, Bahadur D (2013) Shape-controlled hierarchical ZnO architectures: photocatalytic and antibacterial activities. CrystEngComm 15:4631–4639. doi:10.1039/C3CE27084J

    Article  Google Scholar 

  6. Gupta J, Bhargava P, Bahadur D (2015) Fluorescent ZnO for imaging and induction of DNA fragmentation and ROS-mediated apoptosis in cancer cells. J Mater Chem B 3:1968–1978. doi:10.1039/C4TB01661K

    Article  Google Scholar 

  7. Prakash A, Bahadur D (2014) The role of ionic electrolytes on capacitive performance of ZnO-reduced graphene oxide nanohybrids with thermally tunable morphologies. ACS Appl Mater Interfaces 6:1394–1405. doi:10.1021/am405031y

    Article  Google Scholar 

  8. Hong RY, Li JH, Chen LL (2009) Synthesis, surface modification and photocatalytic property of ZnO nanoparticles. Powder Technol 189:426–432. doi:10.1016/j.powtec.2008.07.004

    Article  Google Scholar 

  9. Ungul J, Dejene BF (2016) Effect of solvent medium on the structural, morphological and optical properties of ZnO nanoparticles synthesized by the sol–gel method. Phys B 480:26–30. doi:10.1016/j.physb.2015.10.007

    Article  Google Scholar 

  10. Gupta J, Barick KC, Bahadur D (2011) Defect mediated photocatalytic activity in shape-controlled ZnO nanostructures. J Alloys Compds 509:6725–6730. doi:10.1016/j.jallcom.2011.03.157

    Article  Google Scholar 

  11. Debbarma M, Das S, Saha M (2013) Effect of reducing agents on the structure of zinc oxide under microwave irradiation. Adv Manuf 1:183–186. doi:10.1007/s40436-013-0020-7

    Article  Google Scholar 

  12. Xie J, Li Y, Zhao W, Bian L, Wei Y (2011) Simple fabrication and photocatalytic activity of ZnO particles with different morphologies. Powder Technol 207:140–144. doi:10.1016/j.powtec.2010.10.019

    Article  Google Scholar 

  13. Panigrahy B, Aslam M, Misra DS, Bahadur D (2009) Polymer-mediated shape-selective synthesis of ZnO nanostructures using a single-step aqueous approach. CrystEngComm 11:1920–1925. doi:10.1039/B904833M

    Article  Google Scholar 

  14. Gupta J, Bhargava P, Bahadur D (2014) Morphology dependent photocatalytic and magnetic properties of ZnO nanostructures. Phys B 448:16–19. doi:10.1016/j.physb.2014.03.081

    Article  Google Scholar 

  15. Wang H, Xie C, Zhang W, Cai S, Yang Z, Gui Y (2007) Comparison of dye degradation efficiency using ZnO powders with various size scales. J Hazard Mater 141:645–652. doi:10.1016/j.jhazmat.2006.07.021

    Article  Google Scholar 

  16. Tong G-X, Du F-F, Liang Y (2013) Polymorphous ZnO complex architectures: selective synthesis, mechanism, surface area and Zn-polar plane-codetermining antibacterial activity. J Mater Chem B 1:454–463. doi:10.1039/C2TB00132B

    Article  Google Scholar 

  17. Hong Y, Wang J, Yuan B (2014) Template free synthesis of ZnO spindles and flowers via hydrothermal route. Adv Appl Ceram 113:178–183. doi:10.1179/1743676113Y.0000000139

    Article  Google Scholar 

  18. Xiong H-M, Ma R-Z, Wang S-F, Xia Y-Y (2011) Photoluminescent ZnO nanoparticles synthesized at the interface between air and triethylene glycol. J Mater Chem 21:3178–3182. doi:10.1039/C0JM02577A

    Article  Google Scholar 

  19. Yang C, Li Q, Tang L, Bai A, Song H, Yu Y (2016) Monodispersed colloidal zinc oxide nanospheres with various size scales: synthesis, formation mechanism, and enhanced photocatalytic activity. J Mater Sci 51:5445–5459. doi:10.1007/s10853-016-9848-0

    Article  Google Scholar 

  20. Lee S, Jeong S, Kim D, Hwang S, Jeon M, Moon J (2008) ZnO nanoparticles with controlled shapes and sizes prepared using a simple polyol synthesis. Superlattices Microstruct 43:330–339. doi:10.1016/j.spmi.2008.01.004

    Article  Google Scholar 

  21. Romero R, Leinen D, Dalchiele EA, Ramos-Barrado JR, Martín F (2006) The effects of zinc acetate and zinc chloride precursors on the preferred crystalline orientation of ZnO and Al-doped ZnO thin films obtained by spray pyrolysis. Thin Solid Films 515:1942–1949. doi:10.1016/j.tsf.2006.07.152

    Article  Google Scholar 

  22. Liu B, Zeng HC (2004) Room temperature solution synthesis of monodispersed single-crystalline ZnO nanorods and derived hierarchical nanostructures. Langmuir 20:4196–4204. doi:10.1021/la035264o

    Article  Google Scholar 

  23. Panigrahy B, Aslam M, Misra DS, Ghosh M, Bahadur D (2010) Defect-related emissions and magnetization properties of ZnO nanorods. Adv Funct Mater 20:1161–1165. doi:10.1002/adfm.200902018

    Article  Google Scholar 

  24. Andelman T, Gong Y, Polking M (2005) Morphological control and photoluminescence of zinc oxide nanocrystals. J Phys Chem B 109:14314–14318. doi:10.1021/jp050540o

    Article  Google Scholar 

  25. Klubnuan S, Suwanboon S, Amornpitoksuk P (2016) Effects of optical band gap energy, band tail energy and particle shape on photocatalytic activities of different ZnO nanostructures prepared by a hydrothermal method. Opt Mater 53:134–141. doi:10.1016/j.optmat.2016.01.045

    Article  Google Scholar 

  26. Sharma A, Singh BP, Dhar S, Gondorf A, Spasova M (2012) Effect of surface groups on the luminescence property of ZnO nanoparticles synthesized by sol–gel route. Surf Sci 606:L13–L17. doi:10.1016/j.susc.2011.09.006

    Article  Google Scholar 

  27. Li H, Schirra LK, Shim J (2012) Zinc oxide as a model transparent conducting oxide: a theoretical and experimental study of the impact of hydroxylation, vacancies, interstitials, and extrinsic doping on the electronic properties of the polar ZnO (0002) surface. Chem Mater 24:3044–3055. doi:10.1021/cm301596x

    Article  Google Scholar 

  28. Bhattacharjee R, Hung IM (2014) Effect of different concentration Li-doping on the morphology, defect and photovoltaic performance of Li–ZnO nanofibers in the dye-sensitized solar cells. Mater Chem Phys 143:693–701. doi:10.1016/j.matchemphys.2013.09.055

    Article  Google Scholar 

  29. Wang J, Mei Y, Lu X (2016) Effects of annealing pressure and Ar+ sputtering cleaning on Al-doped ZnO films. Appl Surf Sci 387:779–783. doi:10.1016/j.apsusc.2016.06.069

    Article  Google Scholar 

  30. Patra MK, Manoth M, Singh VK (2009) Synthesis of stable dispersion of ZnO quantum dots in aqueous medium showing visible emission from bluish green to yellow. J Lumin 129:320–324. doi:10.1016/j.jlumin.2008.10.014

    Article  Google Scholar 

  31. Sudha M, Senthilkumar S, Hariharan R, Suganthi A, Rajarajan M (2013) Synthesis, characterization and study of photocatalytic activity of surface modified ZnO nanoparticles by PEG capping. J Sol-Gel Sci Technol 65:301–310. doi:10.1007/s10971-012-2936-y

    Article  Google Scholar 

  32. Liu X, Chen N, Xing X (2015) A high-performance n-butanol gas sensor based on ZnO nanoparticles synthesized by a low-temperature solvothermal route. RSC Adv. 5:54372–54378. doi:10.1039/C5RA05148G

    Article  Google Scholar 

  33. Barick KC, Aslam M, Dravid VP, Bahadur D (2008) Self-aggregation and assembly of size-tunable transition metal doped ZnO nanocrystals. J Phys Chem C 112:15163–15170. doi:10.1021/jp802361r

    Article  Google Scholar 

  34. Ding J, Fang X, Yang R, Kan B, Li X, Yuan N (2014) Transformation of ZnO polycrystalline sheets into hexagon-like mesocrystalline ZnO rods (tubes) under ultrasonic vibration. Nanoscale Res Lett 9:214–219. doi:10.1186/1556-276X-9-214

    Article  Google Scholar 

  35. Feng J-J, Wang Z-Z, Li Y-F, Chen J-R, Wang A-J (2013) Control growth of single crystalline ZnO nanorod arrays and nanoflowers with enhanced photocatalytic activity. J Nanopart Res 15:1565–1577. doi:10.1007/s11051-013-1565-x

    Article  Google Scholar 

  36. Kathalingam A, Park H-C, Kim S-D, Kim H-S, VelumaniS Mahalingam T (2015) Synthesis of ZnO nanorods using different precursor solutions and their two terminal device characterization. J Mater Sci Mater Electron 26:5724–5734. doi:10.1007/s10854-015-3129-6

    Article  Google Scholar 

  37. Barick KC, Sharma P, Mukhija A, Sainis JK, Gupta A, Hassan PA (2015) Effect of cetylpyridinium chloride on surface passivation and photocatalytic activity of ZnO nanostructures. J Environ Chem Eng 3:1346–1355. doi:10.1016/j.jece.2014.12.007

    Article  Google Scholar 

  38. Flores NM, Pal U, Galeazzi R, Sandoval A (2014) Effects of morphology, surface area, and defect content on the photocatalytic dye degradation performance of ZnO nanostructures. RSC Adv 4:41099–41110. doi:10.1039/C4RA04522J

    Article  Google Scholar 

  39. Zhang X, Qin J, Xue Y, Yu P, Zhang B, Wang L, Liu R (2014) Effect of aspect ratio and surface defects on the photocatalytic activity of ZnO nanorods. Sci Rep 4:4596–4603. doi:10.1038/srep04596

    Article  Google Scholar 

  40. Barhoum A, Melcher J, Van Assche G (2017) Synthesis, growth mechanism, and photocatalytic activity of Zinc oxide nanostructures: porous microparticles versus nonporous nanoparticles. J Mater Sci 52:2746–2762. doi:10.1007/s10853-016-0567-3

    Article  Google Scholar 

  41. Ullah R, Dutta J (2008) Photocatalytic degradation of organic dyes with manganese-doped ZnO nanoparticles. J Hazard Mater 156:194–200. doi:10.1016/j.jhazmat.2007.12.033

    Article  Google Scholar 

  42. Kaviya S, Prasad E (2016) Eco-friendly synthesis of ZnO nanopencils in aqueous medium: a study of photocatalytic degradation of methylene blue under direct sunlight. RSC Adv 6:33821–33827. doi:10.1039/C6RA04306B

    Article  Google Scholar 

  43. Henrique SO, Luiz CAO, Marcio CP (2015) Nanostructured vanadium-doped iron oxide: catalytic oxidation of methylene blue dye. J Chem 39:3051–3058. doi:10.1039/c4nj02063d

    Google Scholar 

  44. Wladmir FdS, Iara RG, Luiz CAO (2007) Natural and H2-reduced limonite for organic oxidation by a Fenton-like system: Mechanism study via ESI-MS and theoretical calculations. J Mol Catal A Chem 278:145–151. doi:10.1016/j.molcata.2007.09.003

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the help of Sophisticated Analysis Instruments Facility, IIT Bombay, for providing SEM and TEM facilities. The financial support by Nanomission of DST, Government of India, is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Niroj Kumar Sahu or Dhirendra Bahadur.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 128 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thongam, D.D., Gupta, J., Sahu, N.K. et al. Investigating the role of different reducing agents, molar ratios, and synthesis medium over the formation of ZnO nanostructures and their photo-catalytic activity. J Mater Sci 53, 1110–1122 (2018). https://doi.org/10.1007/s10853-017-1587-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1587-3

Keywords

Navigation