Skip to main content
Log in

Sliding of water–glycerol mixture droplets on hydrophobic solid–liquid bulk composites using Ti plates with a fibrous TiO2 layer

  • Composites
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Fibrous TiO2 layer was formed on a metal Ti plate by soaking it in a KOH solution and subsequently firing it in air at 600 °C for 2 h. Hydrophobic solid–liquid bulk composite (SLBC) was prepared by impregnation of a commercial silicone-based oil into the fibrous TiO2 layer after coating with fluoroalkylsilane. Based on the spreading coefficients from interface energies, the topmost solid surface of the SLBC was covered by the oil film when a water–glycerin mixture droplet was placed on the surface. The mixture droplets slid down the SLBC with acceleration. Particle image velocimetry (PIV) analysis revealed rolling and slipping modes in the sliding of the mixture droplets on the SLBC surface. During sliding, the coefficient of the viscous drag force was correlated with the velocity ratio (U total/U slip). Results suggest that the estimation of the internal fluidity of the liquid droplet was feasible to some degree by evaluating the coefficient during droplet sliding with constant acceleration on the SLBC surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Nakajima A (2011) Design of hydrophobic surfaces for liquid droplet control. NPG Asia Mater 3:49–56

    Article  Google Scholar 

  2. Quéré D (2005) Non-sticking drops. Rep Prog Phys 68:2495–2532

    Article  Google Scholar 

  3. Gogte S, Vorobieff P, Truesdell R, Mammoli A, van Swol F, Shah P, Brinker CJ (2005) Effective slip on textured superhydrophobic surfaces. Phys Fluids 17:51701-1–51701-4

    Article  Google Scholar 

  4. Sakai M, Song JH, Yoshida N, Suzuki S, Kameshima Y, Nakajima A (2006) Direct observation of internal fluidity in a water droplet during sliding on hydrophobic surfaces. Langmuir 22:4906–4909

    Article  Google Scholar 

  5. Hodges SR, Jensen OE, Rallison JM (2004) Sliding, slipping and rolling: the sedimentation of a viscous drop down a gently inclined plane. J Fluid Mech 512:95–131

    Article  Google Scholar 

  6. Mahadevan L, Pomeau Y (1999) Rolling droplets. Phys Fluids 11:2449–2453

    Article  Google Scholar 

  7. Nakajima A, Suzuki S, Kameshima Y, Yoshida N, Watanabe T, Okada K (2003) Sliding mode transition of water droplet on the silicon surface coated with octadecyltrichlorosilane. Chem Lett 32–33:1148–1149

    Article  Google Scholar 

  8. Suzuki S, Nakajima A, Sakai M, Sakurada Y, Yoshida N, Hashimoto A, Kameshima Y, Okada K (2008) Slipping and rolling ratio of sliding acceleration for a water droplet sliding on fluoroalkylsilane coatings of different roughness. Chem Lett 37:58–59

    Article  Google Scholar 

  9. Sakurada Y, Suzuki S, Sakai M, Nakajima A, Kameshima Y, Okada K (2008) Effect of liquid viscosity on the internal fluidity of a droplet sliding on a fluoroalkylsilane coating. Chem Lett 37:688–689

    Article  Google Scholar 

  10. Suzuki S, Nakajima A, Sakurada Y, Sakai M, Yoshida N, Hashimoto A, Kameshima Y, Okada K (2009) Mass dependence of slipping/rolling ratio in sliding acceleration of water droplets on a smooth fluoroalkylsilane coating. J Jpn Soc Colour Mater 82:3–8

    Article  Google Scholar 

  11. Suzuki S, Sakai M, Yoshida N, Hashimoto A, Kameshima Y, Okada K, Nakajima A (2010) Sliding behavior of water droplets on smooth hydrophobic fluoroalkylsilane coatings with different surface coverage ratio. J Jpn Soc Colour Mater 83:499–504

    Article  Google Scholar 

  12. Yoshimitsu Z, Nakajima A, Watanabe T, Hashimoto K (2002) Effects of surface structure on the hydrophobicity and sliding behavior of water droplets. Langmuir 18:5818–5822

    Article  Google Scholar 

  13. Reyssat M, Quéré D (2009) Contact angle hysteresis generated by strong dilute defects. J Phys Chem B 113:3906–3909

    Article  Google Scholar 

  14. Öner D, McCarthy TJ (2000) Ultrahydrophobic surfaces. Effects of topography length scales on wettability, Langmuir 16:7777–7782

    Google Scholar 

  15. Cubaud T, Fermigier M (2004) Advancing contact lines on chemically patterned surfaces. J Colloid Interface Sci 269:171–177

    Article  Google Scholar 

  16. Iliev SD, Pesheva NC (2003) Wetting properties of well-structured heterogeneous substrates. Langmuir 19:9923–9931

    Article  Google Scholar 

  17. Song J-H, Sakai M, Yoshida N, Suzuki S, Kameshima Y, Nakajima A (2006) Dynamic hydrophobicity of water droplets on the line-patterned hydrophobic surfaces. Surf Sci 600:2711–2717

    Article  Google Scholar 

  18. Buehrle J, Herminghaus S, Mugele F (2002) Impact of line tension on the equilibrium shape of liquid droplets on patterned substrates. Langmuir 18:9771–9777

    Article  Google Scholar 

  19. Kusumaatmaja H, Leopoldes J, Dupuis A, Yeomans JM (2006) Drop dynamics on chemically patterned surfaces. Europhys Lett 73:740–746

    Article  Google Scholar 

  20. Furuta T, Sakai M, Isobe T, Matsushita S, Nakajima A (2011) Sliding of water droplets on hydrophobic surfaces with various hydrophilic region sizes. Langmuir 27:7307–7313

    Article  Google Scholar 

  21. Nakajima A, Nakagawa Y, Furuta T, Sakai M, Isobe T, Matsushita S (2013) Sliding of water droplets on smooth hydrophobic silane coatings with regular triangle hydrophilic regions. Langmuir 29:9269–9275

    Article  Google Scholar 

  22. Wong T-S, Kang SH, Tang SKY, Smythe EJ, Hatton BD, Grinthal A, Aizenberg J (2011) Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity. Nature 477:443–447

    Article  Google Scholar 

  23. Qiu R, Zhang Q, Wang P, Jiang L, Hou J, Guo W, Zhang H (2014) Fabrication of slippery liquid-infused porous surface based on carbon fiber with enhanced corrosion inhibition property. Colloids Surf A Physicochem Eng Asp 453:132–141

    Article  Google Scholar 

  24. Chen L, Geissler A (2014) Transparent, slippery surfaces made with sustainable porous cellulose lauroyl ester films. ACS Appl Mater Interfaces 6(9):6969–6976

    Article  Google Scholar 

  25. Yao X, Hu Y, Grinthal A, Wong T-S, Mahadevan L, Aizenberg J (2013) Adaptive fluid-infused porous films with tunable transparency and wettability. Nature Mater 12(6):529–534

    Article  Google Scholar 

  26. Yang J, Song H, Ji H, Chen B (2014) Slippery lubricant-infused textured aluminum surfaces. J Adhes Sci Technol 28(19):1949–1957

    Article  Google Scholar 

  27. Lee C, Kim H, Nam Y (2014) Drop impact dynamics on oil-infused nanostructured surfaces. Langmuir 30(28):8400–8407

    Article  Google Scholar 

  28. Subramanyam S, Rykaczewski K, Varanasi K (2013) Ice adhesion on lubricant-impregnated textured surfaces. Langmuir 29(44):13414–13418

    Article  Google Scholar 

  29. Chen J, Dou R, Cui D, Zhang Q (2013) Robust prototypical anti-icing coatings with a self-lubricating liquid water layer between ice and substrate. ACS Appl Mater Interfaces 5(10):4026–4030

    Article  Google Scholar 

  30. Tsuruki Y, Sakai M, Isobe T, Matsushita S, Nakajima A (2014) Static and dynamic hydrophobicity of alumina-based porous ceramics impregnated with fluorinated oil. J Mater Res 29(14):1546–1555

    Article  Google Scholar 

  31. Sunny S, Vogel N, Howell C, Vu TL, Aizenberg J (2014) Lubricant-infused nanoparticulate coatings assembled by layer-by-layer deposition. Adv Funct Mater 24(42):6658–6667

    Article  Google Scholar 

  32. Boreyko J, Polizos G (2014) Air-stable droplet interface bilayers on oil-infused surfaces. Proc Natl Acad Sci 111(21):7588–7593

    Article  Google Scholar 

  33. Anand S, Rykaczewski K, Subramanyam SB, Beysens D, Varanasi KK (2014) How droplets nucleate and grow on liquids and liquid impregnated surfaces. Soft Matter 11(1):69–80

    Article  Google Scholar 

  34. Lafuma A, Quéré D (2011) Slippery pre-suffused surfaces. Europhys Lett 96(5):56001-1–56001-4

    Article  Google Scholar 

  35. Smith JD, Dhiman R, Anand S, Reza-Garduno E, Cohen RE, McKinley GH, Varanasi KK (2013) Droplet mobility on lubricant-impregnated surfaces. Soft Matter 9(6):1772–1780

    Article  Google Scholar 

  36. Yokoyama K, Sakai M, Isobe T, Matsushita S, Nakajima A (2017) Droplet viscosity effects on dynamic hydrophobicity of a solid–liquid bulk composite prepared from porous glass. J Mater Sci 52:595–604. doi:10.1007/s10853-016-0356-z

    Article  Google Scholar 

  37. Sakai M, Hashimoto A, Yoshida N, Suzuki S, Kameshima Y, Nakajima A (2007) An image analysis system for evaluating sliding behavior of a liquid droplet on a hydrophobic surface. Rev Sci Instrum 78:045103-1–045103-5

    Google Scholar 

  38. Morita H, Plog S, Kajiya T, Doi M (2009) Slippage of droplet of polymer solution on glass substrate. J Phys Soc Jpn 78:014804-1–014804-4

    Google Scholar 

  39. Varagnolo S, Mistura G, Pierno M, Sbragaglia M (2015) Sliding droplets of xanthan solutions: a joint experimental and numerical study. The Eur Phys J E 38:126-1–126-8

    Article  Google Scholar 

  40. Spiers RP, Subbaraman CV, Wilkinson WL (1974) Free coating of a Newtonian liquid onto a vertical surface. Chem Eng Sci 29:389–396

    Article  Google Scholar 

  41. Wang C, Zhang X, Jia Y, Yang J, Sun P, Liu Y (2011) Hydrothermal growth of layered titanate nanosheet arrays on titanium foil and their topotactic transformation to heterostructured TiO2 photocatalysts. J Phys Chem C 115:22276–22285

    Article  Google Scholar 

  42. Pattanayak DK, Kawai T, Matsushita T, Takadama H, Nakamura T, Kokubo T (2009) Effect of HCl concentrations on apatite-forming ability of NaOH–HCl and heat-treated titanium metal. J Mater Sci Mater Med 20:2401–2411

    Article  Google Scholar 

  43. Miyauchi M, Tokudome H (2007) Super-hydrophilic and transparent thin films of TiO2 nanotube arrays by a hydrothermal reaction. J Mater Chem 17:2095–2100

    Article  Google Scholar 

  44. Vargaftik NB, Volkov BN, Voljak LD (1983) International tables of the surface tension of water. J Phys Chem Ref Data 12(3):817–820

    Article  Google Scholar 

  45. Physical Properties of Glycerine and Its Solutions (1963) Glycerine Producers’ Association ed., p 22

  46. Podgorski T, Flesselles JM, Limat L (2001) Corners, cusps, and pearls in running droplets. Phys Rev Lett 87:036102–1–036102–4

    Article  Google Scholar 

  47. Grand NL, Daerr A, Limat L (2005) Shape and motion of drops sliding down and inclined plane. J Fluid Mech 541:293–315

    Article  Google Scholar 

Download references

Acknowledgements

The authors appreciate Prof. Masahiro Miyauchi for helpful discussion and EDX analysis. The authors are grateful to the staff of the Center of Advanced Materials Analysis (CAMA) at Tokyo Institute of Technology for SEM observations. This work was supported in part by a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science, and Technology of Japan (15H04120).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akira Nakajima.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 942 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Takahashi, H., Higashino, Y., Sakai, M. et al. Sliding of water–glycerol mixture droplets on hydrophobic solid–liquid bulk composites using Ti plates with a fibrous TiO2 layer. J Mater Sci 53, 1157–1166 (2018). https://doi.org/10.1007/s10853-017-1582-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1582-8

Keywords

Navigation