Skip to main content
Log in

Synthesis, microstructure, and electrical behavior of (Na0.5Bi0.5)0.94Ba0.06TiO3 piezoelectric ceramics via a citric acid sol–gel method

  • Ceramics
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Nanosize (Na0.5Bi0.5)0.94Ba0.06TiO3 precursor powders were prepared via the citric acid sol–gel method. The ceramics were sintered at 1100–1150 °C. All ceramics exhibit a single-phase perovskite structure. With increasing sintering temperature, the average size of grains in the samples changes slightly from 0.3 to 0.5 µm. All ceramics show obvious dielectric dispersion. Activation energy values were obtained via impedance, electric modulus, and conductivity, respectively, which are in the range of 0.60–1.06 eV. Compared to ceramics synthesized by solid-state reaction method, the as-synthesized samples are fine-grained and have high depolarization temperature and excellent temperature stability of the piezoelectric constant (d 33). The d 33 value of the sample sintered at 1120 °C remains as high as 119 pC N−1 with increasing annealing temperature to 115 °C, whereas the reduced amplitude of d 33 is only approximately 3%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14

Similar content being viewed by others

References

  1. Shvartsman VV, Lupascu DC (2012) Lead-free relaxor ferroelectrics. J Am Ceram Soc 95:1–26

    Article  Google Scholar 

  2. Rödel J, Webber KG, Dittmer R, Jo W, Kimura M, Damjanovic D (2015) Transferring lead-free piezoelectric ceramics into application. J Eur Ceram Soc 35:1659–1681

    Article  Google Scholar 

  3. Kainz T, Naderer M, Schütz D, Fruhwirth O, Mautner FA, Reichmann K (2014) Solid state synthesis and sintering of solid solutions of BNT-xBKT. J Eur Ceram Soc 34:3685–3697

    Article  Google Scholar 

  4. Acosta M, Schmitt LA, Molina-Luna L, Scherrer MC, Brilz M, Webber KG, Deluca M, Kleebe HJ, Rödel J, Donner W (2015) Core-shell lead-free piezoelectric ceramics: current status and advanced characterization of the Bi1/2Na1/2TiO3–SrTiO3 system. J Am Ceram Soc 98:3405–3422

    Article  Google Scholar 

  5. Smolenskii GA, Isupv VA, Agranovskaya AI, Krainik NN (1961) New ferroelectric of complex composition. Phys Solid State 2:2651–2654

    Google Scholar 

  6. Xu Q, Huang YH, Chen M, Chen W, Kim BH, Ahn BK (2008) Effect of bismuth deficiency on structure and electrical properties of (Na0.5Bi0.5)0.93Ba0.07TiO3 ceramics. J Phys Chem Solids 69:1996–2003

    Article  Google Scholar 

  7. Zuo R, Su S, Wu Y, Fu J, Wang M, Li L (2008) Influence of A-site nonstoichiometry on sintering, microstructure and electrical properties of (Bi0.5Na0.5)TiO3 ceramics. Mater Chem Phys 110:311–315

    Article  Google Scholar 

  8. Machado R, Santos VB, Ochoa DA, Cerdeiras E, Mestres L, Garcia JE (2017) Elastic, dielectric and electromechanical properties of (Bi0.5Na0.5)TiO3–BaTiO3 piezoceramics at the morphotropic phase boundary region. J Alloys Compd 690:568–574

    Article  Google Scholar 

  9. Li HL, Liu Q, Zhou JJ, Wang K, Li JF, Liu H, Fang JZ (2016) Grain size dependent electrostrain in Bi1/2Na1/2TiO3–SrTiO3 incipient piezoceramics. J Eur Ceram Soc 36:2849–2853

    Article  Google Scholar 

  10. Xu Q, Lanagan MT, Luo W, Zhang L, Xie J, Hao H, Cao MH, Yao ZH, Liu HX (2016) Electrical properties and relaxation behavior of Bi0.5Na0.5TiO3–BaTiO3 ceramics modified with NaNbO3. J Eur Ceram Soc 36:2469–2477

    Article  Google Scholar 

  11. Yin DS, Zhao ZH, Dai YJ, Zhao Z, Zhang XW, Wang SH (2016) Electrical properties and relaxor phase evolution of Li-modified BNT–BKT–BT lead-free ceramics. J Am Ceram Soc 99:2354–2360

    Article  Google Scholar 

  12. Bai WF, Chen DQ, Huang YW, Shen B, Zhai JW, Ji ZG (2016) Electromechanical properties and structure evolution in BiAlO3-modified Bi0.5Na0.5TiO3–BaTiO3 lead-free piezoceramics. J Alloys Compd 667:6–17

    Article  Google Scholar 

  13. Chandrasekhar M, Kumar P (2015) Synthesis and characterizations of BNT–BT and BNT–BT–KNN ceramics for actuator and energy storage applications. Ceram Int 41:5574–5580

    Article  Google Scholar 

  14. Takenaka T, Maruyama K, Sakata K (1991) (Bi1/2Na1/2)TiO3–BaTiO3 system for lead-free piezoelectric ceramics. Jpn J Appl Phys Part 1 30:2236–2239

    Article  Google Scholar 

  15. Li P, Liu BH, Shen B, Zhai JW, Li LY, Zeng HR (2017) Large strain response in Bi4Ti3O12 modified BNT–BT piezoelectric ceramics. Ceram Int 43:1008–1021

    Article  Google Scholar 

  16. Qiao XS, Chen XM, Lian HL, Chen WT, Zhou JP, Liu P (2016) Microstructure and electrical properties of nonstoichiometric 0.94(Na0.5Bi0.5+x)TiO3–0.06BaTiO3 lead-free ceramics. J Am Ceram Soc 99:198–205

    Article  Google Scholar 

  17. Meng WQ, Zuo RZ, Su S, Wang XH, Li LT (2011) Two-step sintering and electrical properties of sol–gel derived 0.94(Bi0.5Na0.5)TiO3–0.06BaTiO3 lead-free ceramics. Mater Electron 22:1841–1847

    Article  Google Scholar 

  18. Zhang YR, Li JF, Zhang BP, Peng CE (2008) Piezoelectric and ferroelectric properties of Bi-compensated (Bi1/2Na1/2)TiO3–(Bi1/2K1/2)TiO3 lead-free piezoelectric ceramics. J Appl Phys 103:074109-1–074109-6

    Google Scholar 

  19. Lidjici H, Lagoun B, Berrahal M, Rguitti M, Hentatti MA, Khemakhem H (2015) XRD, Raman and electrical studies on the (1−x)(Na0.5Bi0.5)TiO3-xBaTiO3 lead free ceramics. J Alloys Compd 618:643–648

    Article  Google Scholar 

  20. Zhao ML, Wang CL, Wang JF, Chen HC, Zhong WL (2004) Enhanced piezoelectric properties of (Bi0.5Na0.5)(1-x)Ba-xTiO3 lead-free ceramics by sol–gel method. Acta Phys Sin 53:2357–2362

    Google Scholar 

  21. Pookmanee P, Rujijanagul G, Ananta S, Heimann RB, Phanichphant S (2004) Effect of sintering temperature on microstructure of hydrothermally prepared bismuth sodium titanate ceramics. J Eur Ceram Soc 24:517–520

    Article  Google Scholar 

  22. Kim BH, Han SJ, Kim JH, Lee JH, Ahn BK, Xu Q (2007) Electrical properties of (1-x)(Bi0.5Na0.5)TiO3-xBaTiO3 synthesized by emulsion method. Ceram Int 33:447–452

    Article  Google Scholar 

  23. Costa AL, Montanari G, Galassi C, Cernea M, Bezzi F, Albonetti S (2006) Synthesis of Nb doped lead zirconate titanate by chemical methods. Adv Eng Mater 8:572–576

    Article  Google Scholar 

  24. Cao WP, Lia WL, Xua D, Houa YF, Wanga W, Fei WD (2014) Enhanced electrocaloric effect in lead-free NBT-based ceramics. Ceram Int 40:9273–9278

    Article  Google Scholar 

  25. Cernea M, Vasile BS, Capiani C, Ioncea A, Galassi C (2012) Dielectric and piezoelectric behaviors of NBT-BT0.05 processed by sol–gel method. J Eur Ceram Soc 32:133–139

    Article  Google Scholar 

  26. Qiao XS, Chen XM, Lian HL, Zhou JP, Liu P (2016) Dielectric, ferroelectric, piezoelectric properties and impedance analysis of nonstoichiometric (Bi0.5Na0.5)0.94+xBa0.06TiO3 ceramics. J Eur Ceram Soc 36:3995–4001

    Article  Google Scholar 

  27. Jo W, Schaab S, Sapper E, Schmitt LA, Kleebe HJ, Bell AJ, Rödel J (2011) On the phase identity and its thermal evolution of lead free (Bi1/2Na1/2)TiO3-6 mol% BaTiO3. J Appl Phys 110:074106-1–074106-9

    Article  Google Scholar 

  28. Ma C, Tan X, Dul’kin E, Roth M (2010) Domain structure-dielectric property relationship in lead-free (1-x)(Bi1/2Na1/2)TiO3-xBaTiO3 ceramics. J Appl Phys 108:104105-1–104105-8

    Google Scholar 

  29. Bai WF, Li LY, Li W, Shen B, Zhai JW, Chen H (2014) Phase diagrams and electromechanical strains in lead-free BNT-based ternary perovskite compounds. J Am Ceram Soc 97:3510–3518

    Article  Google Scholar 

  30. Wang T, Chen XM, Qiu YZ, Lian HL, Chen WT (2017) Microstructure and electrical properties of (1-x)[0.8Bi0.5Na0.5TiO3–0.2Bi0.5K0.5TiO3]-xBiCoO3 lead-free ceramics. Mater Chem Phys 186:407–414

    Article  Google Scholar 

  31. Yu ZD, Chen XM (2016) Dielectric diffusive behavior of (Lax(Na0.5Bi0.5)1-1.5x)0.97Ba0.03TiO3 lead-free ceramics. Phys B 503:7–10

    Article  Google Scholar 

  32. Xu Q, Huang DP, Chen M, Chen W, Liu HX, Kim BH (2009) Effect of bismuth excess on ferroelectric and piezoelectric properties of a (Na0.5Bi0.5)TiO3–BaTiO3 composition near the morphotropic phase boundary. J Alloys Compd 471:310–316

    Article  Google Scholar 

  33. Cheng JR, Shi GY, Qi YF, Chen JG, Yu SW (2011) Impedance spectroscopy study of high temperature BiFeO3–PbTiO3 based ceramics. J Shanghai Univ (Nat Sci) 17:535–540

    Google Scholar 

  34. Steinsvik S, Bugge R, Gjonnes J, Tafto J, Norby T (1997) The defect structufe of SrTi1-xFexO3-y (x = 0–0.8) investigated by electrical conductivity measurements and electron energy. J Phys Chem Solids 58:969–976

    Article  Google Scholar 

  35. Raymond O, Font R, Suarez-Almodover N, Portelles J, Siqueirous JM (2005) Frequency–temperature response of ferroelectromagnetic Pb(Fe1/2Nb1/2)O3 ceramics obtained by different precursors. Part I. Structural and thermo-electrical. J Appl Phys 97:084108-1–084108-8

    Google Scholar 

  36. Parija B, Panigrahi S (2012) Impedance and AC conductivity study of (Bi0.5Na0.5)TiO3–Ba(Zr0.25Ti0.75)O3 lead-free ceramics. Ferroelectr Lett 39:38–55

    Article  Google Scholar 

  37. Liu LJ, Wu MX, Huang YM, Yang Z, Fang L, Hu CZ (2011) Frequency and temperature dependent dielectric and conductivity behavior of 0.95(K0.5Na0.5)NbO3–0.05BaTiO3 ceramic. Mater Chem Phys 126:769–772

    Article  Google Scholar 

  38. Peng P, Nie HC, Zhen L, Ren WJ, Cao F, Wang GS, Dong XL (2016) Enhanced ferroelectric properties and thermal stability of Mn-doped 0.96(Bi0.5Na0.5)TiO3–0.04BiAlO3 ceramics. J Am Ceram Soc 100:1030–1036

    Article  Google Scholar 

  39. Jain Ruth DE, Sundarakannan B (2016) Role of strain and lattice distortion on ferroelectric and piezoelectric properties of bismuth magnesium zirconate substituted sodium bismuth titanate ceramics. J Mater Sci Mater Electron 27:3250–3257

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Fundamental Research Funds for the Central Universities (Nos. GK201502005, 2016CSZ012, 2017CSY002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-ming Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jing, Ry., Chen, Xm., Ma, Jp. et al. Synthesis, microstructure, and electrical behavior of (Na0.5Bi0.5)0.94Ba0.06TiO3 piezoelectric ceramics via a citric acid sol–gel method. J Mater Sci 53, 274–284 (2018). https://doi.org/10.1007/s10853-017-1492-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1492-9

Keywords

Navigation