Skip to main content
Log in

Analyzing the frequency and temperature dependences of the ac conductivity and dielectric analysis of reduced graphene oxide/epoxy polymer nanocomposites

  • Composites
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A series of composite materials was fabricated by mixing reduced graphene oxide (rGO) powder particles in an epoxy resin. In this paper, we analyze impedance measurements on these materials over broad frequency and temperature ranges. The real and imaginary parts of the effective complex impedance are well fitted to the Cole–Cole equation. The frequency dependence of the ac conductivity follows Jonscher’s law with relaxation processes characterized by a broad distribution of relaxation times. The imaginary part of the effective electric impedance collapses onto a single master curve using a single characteristic frequency as a scaling parameter. We find that the electrical properties of the samples are strongly influenced by graphene oxide content. Below percolation threshold, the ac transport can be interpreted as due to electron hopping. Further, we find that the frequency-dependent effective impedance measurements overlap on a single master curve in the range of temperatures explored, showing that a single electrical conduction mechanism is operative. Close and above percolation threshold, the ac conduction originates from both electron tunneling and capacitive paths among the rGO nanoparticles in the polymer bulk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Adohi BJ-P, Byvhanok D, Haidar B, Brosseau C (2013) Microwave and mechanical properties of quartz/graphene-based polymer nanocomposites. Appl Phys Lett 102:072903(1)–072903(5)

    Article  Google Scholar 

  2. Adohi BJ-P, Laur V, Haidar B, Brosseau C (2014) Measurement of the microwave effective permittivity in tensile-strained polyvinylidene difluoride trifluoroethylene filled with graphene. Appl Phys Lett 104:082902(1)–082902(5)

    Article  Google Scholar 

  3. Adohi BJ-P, Haidar B, Costa LC, Laur V, Brosseau C (2015) Assessing the role of graphene content in the electromagnetic response of graphene polymer nanocomposites. Eur Phys J B 88:280(1)–280(8)

    Article  Google Scholar 

  4. Adohi BJ-P, Brosseau C, Laur V, Haidar B (2017) Graphene controlled butterfly shape in permittivity-field loops of ferroelectric polymer nanocomposites. Appl Phys Lett 110:022902(1)–022902(5)

    Article  Google Scholar 

  5. Eletskii AV, Knizhnik AA, Potapkin BV, Kenny JM (2015) Electrical characteristics of carbon nanotube-doped composites. Phys Usp 58:209–251

    Article  Google Scholar 

  6. Bychanok D, Kuzhir P, Maksimenko S, Bellucci S, Brosseau C (2013) Characterizing epoxy composites filled with carbonaceous nanoparticles from dc to microwave. J Appl Phys 113:124103(1)–124103(6)

    Article  Google Scholar 

  7. De Vivo B, Lamberti P, Tucci V, Guadagno L, Vertuccio L, Vittoria V, Sorrentino A (2012) Comparison of the physical properties of epoxy-based composites filled with different types of carbon nanotubes for aeronautic applications. Adv Polym Technol 31:205–218

    Article  Google Scholar 

  8. Khanam PN, Ponnamma D, Al-Madee MA (2015) Graphene-based polymer nanocomposites in electronics, Sadasivuni KK et al (eds). Springer, Berlin

  9. Marra F, D’Aloia AG, Tamburran A, Ochando IM, De Bellis G, Ellis G, Sarto MS (2016) Electromagnetic and dynamic mechanical properties of epoxy and vinylester-based composites filled with graphene nanoplatelets. Polymers 8:272(1)–272(18)

    Article  Google Scholar 

  10. Qin F, Brosseau C (2011) A review and analysis of microwave absorption in polymer composites filled with carbonaceous particles. J Appl Phys 111:061301(1)–061301(24)

    Google Scholar 

  11. Zhao X, Zhang Z, Wang L, Xi K, Cao Q, Wang D, Yang Y, Du Y (2013) Excellent microwave absorption property of Graphene-coated Fe nanocomposites. Nat Sci Rep 3:3421(1)–3421(5)

    Google Scholar 

  12. Sharifi T, Gracia-Espino E, Reza Barzegar H, Jia X, Nitze F, Hu G, Nordblad P, Tai C-W, Wågberg T (2013) Formation of nitrogen-doped graphene nanoscrolls by adsorption of magnetic γ-Fe2O3 nanoparticles. Nat Commun 4:2319(1)–2319(9)

    Article  Google Scholar 

  13. Bludov YV, Peres NMR, Vasilevskiy MI (2013) Unusual reflection of electromagnetic radiation from a stack of graphene layers at oblique incidence. J Opt 15:114004(1)–114004(7)

    Google Scholar 

  14. Liu P, Huang Y, Zhang X (2014) Superparamagnetic NiFe2O4 particles on poly(3,4-ethylenedioxythiophene)–graphene: synthesis, characterization and their excellent microwave absorption properties. Compos Sci Technol 95:107–113

    Article  Google Scholar 

  15. Jang B, Zhamu A (2008) Processing of nanographene platelets (NGPs) and NGP nanocomposites: a review. J Mater Sci 43:5092–5101

    Article  Google Scholar 

  16. Yang Y, Rigdon W, Huang X, Li X (2013) Enhancing graphene reinforcing potential in composites by hydrogen passivation induced dispersion. Nat Sci Rep 3:2086(1)–2086(7)

    Google Scholar 

  17. Kuilla T, Bhadra S, Yao D, Kim NH, Bose S, Lee JH (2010) Recent advances in graphene based polymer composites. Prog Polym Sci 35:1350–1375

    Article  Google Scholar 

  18. Potts JR, Dreyer DR, Bielawski CW, Ruoff RS (2011) Graphene-based polymer nanocomposites. Polymer 52:5–25

    Article  Google Scholar 

  19. Kim H, Abdala AA, Macosko CW (2010) Graphene/polymer nanocomposites. Macromolecules 43:6515–6530

    Article  Google Scholar 

  20. Stankovich S, Dikin DA, Dommett GHB, Kohlhaas KM, Zimney EJ, Stach EA, Piner RD, Nguyen ST, Ruoff RS (2006) Graphene-based composite materials. Nature 442:282–286

    Article  Google Scholar 

  21. Liang J, Wang Y, Huang Y, Ma Y, Liu Z, Cai J, Zhang C, Gao H, Chen Y (2009) Electromagnetic interference shielding of graphene/epoxy composites. Carbon 47:922–925

    Article  Google Scholar 

  22. Zhang ZC, Meng QJ, Chung TCM (2009) Energy storage study of ferroelectric poly(vinylidene fluoride-trifluoroethylenechlorotrifluoroethylene) terpolymers. Polymer 50:707–715

    Article  Google Scholar 

  23. Xia WM, Xu Z, Wen F, Li WJ, Zhang ZC (2010) Crystalline properties dependence of dielectric and energy storage properties of poly(vinylidene fluoride-chlorotrifluoroethylene). Appl Phys Lett 97:222905

    Article  Google Scholar 

  24. Tagantsev AK, Sherman VO, Astafiev KF, Venkatesh J, Setter N (2013) Ferroelectric materials for microwave tunable applications. J Electroceram 11:5–66

    Article  Google Scholar 

  25. Hu Z, Tian M, Nysten B, Jonas AM (2008) Regular arrays of highly ordered ferroelectric polymer nanostructures for non-volatile low-voltage memories. Nat Mater 8:62–67

    Article  Google Scholar 

  26. Zheng Y, Ni GX, Toh CT, Tan CY, Yao K, Özyilmaz B (2010) Graphene field-effect transistors with ferroelectric gating. Phys Rev Lett 105:166602(1)–166602(5)

    Article  Google Scholar 

  27. Zheng Y, Ni GX, Toh CT, Zeng MG, Chen ST, Yao K, Özyilmaz B (2009) Gate-controlled nonvolatile graphene-ferroelectric memory. Appl Phys Lett 94:163505(1)–163505(5)

    Google Scholar 

  28. Park J, Kim M, Lee Y, Lee HS, Ko H (2015) Fingertip skin-inspired microstructured ferroelectric skins discriminate static/dynamic pressure and temperature stimuli. Sci Adv 1:e1500661

    Article  Google Scholar 

  29. Bae S-H, Kahya O, Sharma BK, Kwon J, Cho HJ, Özyilmaz B, Ahn J-H (2013) Graphene-P(VDF-TrFE) multilayer film for flexible applications. ACS Nano 7:3130–3138

    Article  Google Scholar 

  30. Zhang S, Neese B, Ren K, Chu B, Zhang QM (2006) Microstructure and electromechanical responses in semicrystalline ferroelectric relaxor polymer blends. J Appl Phys 100:044113(1)–044113(6)

    Google Scholar 

  31. Eda G, Franchini G, Chhowalla M (2008) Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nat Nanotechnol 3:270–274

    Article  Google Scholar 

  32. Nioua Y, El Bouazzaoui S, Melo BMG, Prezas PRS, Achour ME, Graça MPF, Costa LC. Electrical studies on reduced graphene oxide/epoxy resin composites. J Comp Mater (in press)

  33. Boukheir S, Len A, Füzi J, Kenderesi V, Achour ME, Eber N, Costa LC, Oueriagli A, Outzourhit A (2016) Structural characterization and electrical properties of carbon nanotubes/epoxy polymer composites. J Appl Polym Sci 134:44514(1)–44514(8)

    Google Scholar 

  34. Jonscher AK (1977) The ‘universal’ dielectric response. Nature 267:673–679

    Article  Google Scholar 

  35. Almond DP, Bowen CR, Rees DAS (2006) Composite dielectrics and conductors: simulation, characterization and design. J Phys D Appl Phys 39:1295–1304

    Article  Google Scholar 

  36. Bowen CR, Almond DP (2006) Modelling the ‘universal’ dielectric response in heterogeneous materials using microstructural electrical networks. Mater Sci Technol 22:719–724

    Article  Google Scholar 

  37. Barsoukov E, Macdonald JR (2005) Impedance spectroscopy: theory, experiment and applications. Wiley Interscience, Hoboken

    Book  Google Scholar 

  38. Aribou N, EL Bouazzaoui S, Achour ME, Brosseau C (2014) Investigating the dielectric properties of carbon black-epoxy composites. Spectrosc Lett 47:336–340

    Article  Google Scholar 

  39. Gong S, Zhu ZH, Li Z (2017) Electron tunnelling and hopping effects on the temperature coefficient of resistance of carbon nanotube/polymer nanocomposites. Phys Chem Chem Phys 19:5113–5120

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Brosseau.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nioua, Y., El Bouazzaoui, S., Melo, B.M.G. et al. Analyzing the frequency and temperature dependences of the ac conductivity and dielectric analysis of reduced graphene oxide/epoxy polymer nanocomposites. J Mater Sci 52, 13790–13798 (2017). https://doi.org/10.1007/s10853-017-1462-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1462-2

Keywords

Navigation