Skip to main content
Log in

Facile preparation of exposed {001} facet TiO2 nanobelts coated by monolayer carbon and its high-performance photocatalytic activity

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The photocatalytic property of TiO2-based nanomaterials can be markedly enhanced by hybridizing conjugated materials at the surface. In this paper, we first utilized a silane coupling agent as carbon source and grafting reagent to prepare a graphite-like carbon coating on the surface of {001} crystal facets that were exposed on TiO2 nanobelts. The thickness of this carbon layer could be controlled to a thickness of a few molecules by adjusting the addition of silane. Due to the synergistic effects between the monolayer carbon coating (~1 nm) and the exposed {001} crystal facets, the as-prepared TiO2 nanobelts enhanced the photocatalytic activity by approximately 2.5 times that of pure TiO2 (Degussa, P–25), to photodegrade methylene blue under UV light. Additionally, the photodegradation of rhodamine B (RHB) was better (approximately 2.1 times) than that of P–25. Further, we discuss the proper mechanism of the enhanced performance, which is attributed to the faster transfer of photogenerated electrons by d-π interaction and the decreased possibility of recombination of e/h+ pairs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Scheme 2
Figure 7

Similar content being viewed by others

References

  1. Linsebigler AL, Lu G, Yates JT (1995) Chem Rev 95:735–758

    Article  Google Scholar 

  2. Xia Y, Yang P, Sun Y et al (2003) Adv Mater 15:353–389

    Article  Google Scholar 

  3. Liu S, Yu J, Jaroniec M (2010) J Am Chem Soc 132:11914–11916

    Article  Google Scholar 

  4. Lazzeri M, Vittadini A, Selloni A (2001) Phys Rev B. doi:10.1103/PhysRevB.63.155409

    Google Scholar 

  5. Chen JS, Tan YL, Li CM et al (2010) J Am Chem Soc 132:6124–6130

    Article  Google Scholar 

  6. Yu J, Qi L, Jaroniec M (2010) J Phys Chem C 114:13118–13125

    Article  Google Scholar 

  7. Lin Y-T, Zeng T-W, Lai W-Z et al (2006) Nanotechnology 17:5781–5785

    Article  Google Scholar 

  8. Pirruccio G, Martín Moreno L, Lozano G, Gómez Rivas J (2013) ACS nano 7:4810–4817

    Article  Google Scholar 

  9. Wang Y, Shi R, Lin J, Zhu Y (2010) Appl Catal B: Environ 100:179–183

    Article  Google Scholar 

  10. Lee DH, Song D, Kang YS, Park WI (2015) J Phys Chem C 119:6880–6885

    Article  Google Scholar 

  11. Wang Y, Du G, Liu H et al (2008) Adv Funct Mater 18:1131–1137

    Article  Google Scholar 

  12. Hanaor DAH, Sorrell CC (2011) J Mater Sci 46:855–874. doi:10.1007/s10853-010-5113-0

    Article  Google Scholar 

  13. Inagaki M, Hirose Y, Matsunaga T, Tsumura T, Toyoda M (2003) Carbon 41:2619–2624

    Article  Google Scholar 

  14. Matsunaga T, Inagaki M (2006) Appl Catal B: Environ 64:9–12

    Article  Google Scholar 

  15. Yang HG, Sun CH, Qiao SZ et al (2008) Nature 453:638–641

    Article  Google Scholar 

  16. Shanmugam S, Gabashvili A, Jacob DS, Yu JC, Gedanken A (2006) Chem Mater 18:2275–2282

    Article  Google Scholar 

  17. Reznik D, Olk C, Neumann D, Copley J (1995) Phys Rev B 52:116–124

    Article  Google Scholar 

  18. Hu YS, Demir-Cakan R, Titirici MM et al (2008) Angew Chem Int Ed 47:1645–1649

    Article  Google Scholar 

  19. Zhang J, Vasei M, Sang Y, Liu H, Claverie JP (2016) ACS Appl Mater interfaces 8:1903–1912

    Article  Google Scholar 

  20. Erdem B, Hunsicker RA, Simmons GW, Sudol ED, Dimonie VL, El-Aasser MS (2001) Langmuir 17:2664–2669

    Article  Google Scholar 

  21. Okpalugo T, Papakonstantinou P, Murphy H, McLaughlin J, Brown N (2005) Carbon 43:153–161

    Article  Google Scholar 

  22. Zhao L, Chen X, Wang X et al (2010) Adv Mater 22:3317–3321

    Article  Google Scholar 

  23. Gordon TR, Cargnello M, Paik T et al (2012) J Am Chem Soc 134:6751–6761

    Article  Google Scholar 

  24. Zhang LW, Fu HB, Zhu YF (2008) Adv Funct Mater 18:2180–2806

    Article  Google Scholar 

  25. Gong X-Q, Selloni A (2005) J Phys Chem B 109:19560–19562

    Article  Google Scholar 

  26. Rajh T, Chen LX, Lukas K, Liu T, Thurnauer MC, Tiede DM (2002) J Phys Chem B 106:10543–10552

    Article  Google Scholar 

  27. Dimitrijevic NM, Saponjic ZV, Bartels DM, Thurnauer MC, Tiede DM, Rajh T (2003) J Phys Chem B 107:7368–7375

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by National Natural Science Foundation of China (Nos. 21376199 and 51002128), Natural Science Foundation of Hunan Province (No. 2015JJ3115), Scientific Research Foundation of Hunan Provincial Education Department (Nos. 17A205 and 15B235) and Postgraduate Innovation Foundation of Hunan Province (No. CX2016B269).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yanhuai Ding or Ping Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Z., Jiang, Y., Yu, Q. et al. Facile preparation of exposed {001} facet TiO2 nanobelts coated by monolayer carbon and its high-performance photocatalytic activity. J Mater Sci 52, 13586–13595 (2017). https://doi.org/10.1007/s10853-017-1446-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1446-2

Keywords

Navigation