Skip to main content
Log in

Facile synthesis and excellent electromagnetic wave absorption properties of flower-like porous RGO/PANI/Cu2O nanocomposites

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Novel porous ternary nanocomposite systems containing reduced graphene oxide (RGO)/polyaniline (PANI)/cuprous oxide (Cu2O) were prepared via one-step in situ redox method. The RGO/PANI/Cu2O nanocomposites present a flower-like structure with an average size of 2.0 μm in diameter. The morphologies and properties of the products can be controlled by adjusting the molar ratios of aniline to Cu2+. When the molar ratio of aniline to Cu2+ is 1:1, the product exhibits excellent microwave absorption property in the frequency range of 2–18 GHz. It can be seen that the maximum reflection loss (RL) of the ternary composite is up to −52.8 dB at 2.7 GHz with a thickness of only 2 mm, and the absorption bandwidth corresponding to −10 dB (90% of EM wave absorption) is 13.2 GHz. The microwave absorption property of ternary RGO/PANI/Cu2O composite is significantly improved due to its special flower-like porous structure, dielectric loss property and well impedance matching characteristics, which is 8.12 times than that of pure RGO and 5.28 times than that of pure PANI. Therefore, our study paves a new way to prepare the promising lightweight and high-performance composite materials combined with the characteristics of three components for electromagnetic absorption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Eun SW, Choi WH, Jang HK, Shin JH, Kim JB, Kim CG (2015) Effect of delamination on the electromagnetic wave absorbing performance of radar absorbing structures. Compos Sci Technol 116:18–25

    Article  Google Scholar 

  2. Micheli D, Vricella A, Pastore R, Marchetti M (2014) Synthesis and electromagnetic characterization of frequency selective radar absorbing materials using carbon nanopowders. Carbon 77:756–774

    Article  Google Scholar 

  3. Qu B, Zhu CL, Li CY, Zhang XT, Chen YJ (2016) Coupling hollow Fe3O4–Fe nanoparticles with graphene sheets for high-performance electromagnetic wave absorbing material. ACS Appl Mater Interfaces 8:3730–3735

    Article  Google Scholar 

  4. Cordova D, Toledo P, Klimach H, Bampi S, Fabris E (2016) EMI resisting MOSFET-only voltage reference based on ZTC condition. Analog Integr Circuits Process 89:45–59

    Article  Google Scholar 

  5. Meshram M, Agrawal NK, Sinha B, Misra P (2004) Characterization of M-type barium hexagonal ferrite-based wide band microwave absorber. J Magn Magn Mater 271:207–214

    Article  Google Scholar 

  6. Feng Y, Qiu T, Shen C (2007) Absorbing properties and structural design of microwave absorbers based on carbonyl iron and barium ferrite. J Magn Magn Mater 318:8–13

    Article  Google Scholar 

  7. Ali K, Iqbal J, Jan T, Ahmad I, Wan D, Bahadur A et al (2017) Synthesis of CuFe2O4–ZnO nanocomposites with enhanced electromagnetic wave absorption properties. J Alloys Compd 705:559–565

    Article  Google Scholar 

  8. Zhang H, Hong M, Chen P, Xie A, Shen Y (2016) 3D and ternary rGO/MCNTs/Fe3O4 composite hydrogels: synthesis, characterization and their electromagnetic wave absorption properties. J Alloys Compd 665:381–387

    Article  Google Scholar 

  9. Han M, Yin X, Kong L, Li M, Duan W, Zhang L et al (2014) Graphene-wrapped ZnO hollow spheres with enhanced electromagnetic wave absorption properties. J Mater Chem A 2:16403–16409

    Article  Google Scholar 

  10. Wang M, Huang J, Tong Z, Li W, Chen J (2013) Reduced graphene oxide–cuprous oxide composite via facial deposition for photocatalytic dye-degradation. J Alloys Compd 568:26–35

    Article  Google Scholar 

  11. Nguyen TT, Shim J-J (2015) Rapid one-step synthesis and electrochemical properties of graphene/carbon nanotubes/MnO2 composites. Synth Metals 199:276–279

    Article  Google Scholar 

  12. Liu P, Huang Y, Wang L, Zong M, Zhang W (2013) Hydrothermal synthesis of reduced graphene oxide–Co3O4 composites and the excellent microwave electromagnetic properties. Mater Lett 107:166–169

    Article  Google Scholar 

  13. Wang T, Li Y, Wang L, Liu C, Geng S, Jia X et al (2015) Synthesis of graphene/α-Fe2O3 composites with excellent electromagnetic wave absorption properties. RSC Adv 5:60114–60120

    Article  Google Scholar 

  14. Choi J, Jung HT (2015) A new triple-layered composite for high-performance broadband microwave absorption. Compos Struct 122:166–171

    Article  Google Scholar 

  15. Ciric-Marjanovic G (2013) Recent advances in polyaniline composites with metals, metalloids and nonmetals. Synth Metals 170:31–56

    Article  Google Scholar 

  16. Marins JA, Soares BG, Fraga M, Muller D, Barra GMO (2014) Self-supported bacterial cellulose polyaniline conducting membrane as electromagnetic interference shielding material: effect of the oxidizing agent. Cellulose 21:1409–1418

    Article  Google Scholar 

  17. Al-Ghamdi AA, Al-Hartomy OA, Al-Solamy F, Al-Hazmi F, Al-Ghamdi AA, El-Mossalamy EH et al (2014) On the prospects of conducting polyaniline/natural rubber composites for electromagnetic shielding effectiveness applications. J Thermoplast Compos Mater 27:765–782

    Article  Google Scholar 

  18. Jazirehpour M, Ebrahimi SAS (2015) Effect of aspect ratio on dielectric, magnetic, percolative and microwave absorption properties of magnetite nanoparticles. J Alloys Compd 638:188–196

    Article  Google Scholar 

  19. Tian CH, Du YC, Xu P, Qiang R, Wang Y, Ding D et al (2015) Constructing uniform core-shell PPy@PANI composites with tunable shell thickness toward enhancement in microwave absorption. ACS Appl Mater Interfaces 7:20090–20099

    Article  Google Scholar 

  20. Yu HL, Wang TS, Wen B, Lu MM, Xu Z, Zhu CL et al (2012) Graphene/polyaniline nanorod arrays: synthesis and excellent electromagnetic absorption properties. J Mater Chem 22:21679–21685

    Article  Google Scholar 

  21. Wang L, Huang Y, Huang HJ (2014) N-doped graphene@polyaniline nanorod arrays hierarchical structures: synthesis and enhanced electromagnetic absorption properties. Mater Lett 124:89–92

    Article  Google Scholar 

  22. Susman MD, Feldman Y, Vaskevich A, Rubinstein I (2014) Chemical deposition of Cu2O nanocrystals with precise morphology control. ACS Nano 8:162–174

    Article  Google Scholar 

  23. Kuang M, Li TT, Chen H, Zhang SM, Zhang LL, Zhang YX (2015) Hierarchical Cu2O/CuO/Co3O4 core-shell nanowires: synthesis and electrochemical properties. Nanotechnology 26:304002–304010

    Article  Google Scholar 

  24. Chakravarty A, Bhowmik K, Mukherjee A, De G (2015) Cu2O nanoparticles anchored on amine-functionalized graphite nanosheet: a potential reusable catalyst. Langmuir 31:5210–5219

    Article  Google Scholar 

  25. Lee S, Oh J, Kim D, Piao Y (2016) A sensitive electrochemical sensor using an iron oxide/graphene composite for the simultaneous detection of heavy metal ions. Talanta 160:528–536

    Article  Google Scholar 

  26. Kim AY, Kim MK, Cho K, Woo JY, Lee Y, Han SH et al (2016) One-step catalytic synthesis of CuO/Cu2O in a graphitized porous C matrix derived from the Cu-based metal organic framework for Li- and Na-ion batteries. ACS Appl Mater Interfaces 8:19514–19523

    Article  Google Scholar 

  27. Huo HH, Guo CY, Li GL, Han X, Xu CL (2014) Reticular-vein-like Cu@Cu2O/reduced graphene oxide nanocomposites for a non-enzymatic glucose sensor. RSC Adv 4:20459–20465

    Article  Google Scholar 

  28. Ro D-K, Paradise EM, Ouellet M, Fisher KJ, Newman KL, Ndungu JM et al (2006) Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature 440:940–943

    Article  Google Scholar 

  29. Fan ZJ, Luo GH, Zhang ZF, Zhou L, Wei F (2006) Electromagnetic and microwave absorbing properties of multi-walled carbon nanotubes/polymer composites. Mater Sci Eng B Solid State Mater Adv Technol 132:85–89

    Article  Google Scholar 

  30. Zhang YH, Zhang N, Tang ZR, Xu YJ (2012) Graphene transforms wide band gap ZnS to a visible light photocatalyst. The new role of graphene as a macromolecular photosensitizer. ACS Nano 6:9777–9789

    Article  Google Scholar 

  31. Wang K, Dong X, Zhao C, Qian X, Xu Y (2015) Facile synthesis of Cu2O/CuO/RGO nanocomposite and its superior cyclability in supercapacitor. Electrochim Acta 152:433–442

    Article  Google Scholar 

  32. Xi X, Liu R, Huang T, Xu Y, Wu D (2016) Strongly coupled polyaniline/graphene hybrids with much enhanced capacitance performance. J Colloid Interface Sci 483:34–40

    Article  Google Scholar 

  33. Wu Q, Chen M, Wang S, Zhang X, Huan L, Diao G (2016) Preparation of sandwich-like ternary hierarchical nanosheets manganese dioxide/polyaniline/reduced graphene oxide as electrode material for supercapacitor. Chem Eng J 304:29–38

    Article  Google Scholar 

  34. Miao J, Xie A, Li S, Huang F, Cao J, Shen Y (2016) A novel reducing graphene/polyaniline/cuprous oxide composite hydrogel with unexpected photocatalytic activity for the degradation of Congo red. Appl Surf Sci 360:594–600

    Article  Google Scholar 

  35. Wang G, Zhuo S, Xing W (2012) Graphene/polyaniline nanocomposite as counter electrode of dye-sensitized solar cells. Mater Lett 69:27–29

    Article  Google Scholar 

  36. Niu H, Zhang S, Ma Q, Qin S, Wan L, Xu J et al (2013) Dye-sensitized solar cells based on flower-shaped α-Fe2O3 as a photoanode and reduced graphene oxide–polyaniline composite as a counter electrode. RSC Adv 3:17228–17235

    Article  Google Scholar 

  37. Li Y, Yang N, Du TT, Wang XZ, Chen W (2016) Transformation of graphene oxide by chlorination and chloramination: implications for environmental transport and fate. Water Res 103:416–423

    Article  Google Scholar 

  38. Frost RL, Cejka J, Ayoko G (2008) Raman spectroscopic study of the uranyl phosphate minerals phosphuranylite and yingjiangite. J Raman Spectrosc 39:495–502

    Article  Google Scholar 

  39. Ding B, Kimura E, Sato T, Fujita S, Shiratori S (2004) Fabrication of blend biodegradable nanofibrous nonwoven mats via multi-jet electrospinning. Polymer 45:1895–1902

    Article  Google Scholar 

  40. Yec CC, Zeng HC (2012) Synthetic architecture of multiple core-shell and yolk-shell structures of (Cu2O@)(n)Cu2O (n = 1-4) with centricity and eccentricity. Chem Mater 24:1917–1929

    Article  Google Scholar 

  41. Qiu W, Kang YL, Lei ZK, Qin QH, Li Q, Wang QA (2010) Experimental study of the Raman strain rosette based on the carbon nanotube strain sensor. J Raman Spectrosc 41:1216–1220

    Article  Google Scholar 

  42. Yamamoto M, Wang ST, Ni MY, Lin YF, Li SL, Aikawa S et al (2014) Strong enhancement of raman scattering from a bulk-inactive vibrational mode in few-layer MoTe2. ACS Nano 8:3895–3903

    Article  Google Scholar 

  43. Ghanbari K, Moloudi M (2016) Flower-like ZnO decorated polyaniline/reduced graphene oxide nanocomposites for simultaneous determination of dopamine and uric acid. Anal Biochem 512:91–102

    Article  Google Scholar 

  44. Liu P, Huang JY, Sanchez DVP, Schwartzman D, Lee SH, Yun M (2016) High yield two-dimensional (2-D) polyaniline layer and its application in detection of B-type natriuretic peptide in human serum. Sens Actuator B Chem 230:184–190

    Article  Google Scholar 

  45. Cao J, Li JC, Liu L, Xie AJ, Li SK, Qiu LG et al (2014) One-pot synthesis of novel Fe3O4/Cu2O/PANI nanocomposites as absorbents in water treatment. J Mater Chem A 2:7953–7959

    Article  Google Scholar 

  46. Mishra M, Singh AP, Gupta V, Chandra A, Dhawan SK (2016) Tunable EMI shielding effectiveness using new exotic carbon: polymer composites. J Alloys Compd 688:399–403

    Article  Google Scholar 

  47. Wang L, Xing H, Gao S, Ji X, Shen Z (2017) Porous flower-like NiO@ graphene composites with superior microwave absorption properties. J Mater Chem C 5:2005–2014

    Article  Google Scholar 

  48. Cao MS, Song WL, Hou ZL, Wen B, Yuan J (2010) The effects of temperature and frequency on the dielectric properties, electromagnetic interference shielding and microwave-absorption of short carbon fiber/silica composites. Carbon 48:788–796

    Article  Google Scholar 

  49. Huang YH, Huang XY, Schadler LS, He JL, Jiang PK (2016) Core@double-shell structured nanocomposites: a route to high dielectric constant and low loss material. ACS Appl Mater Interfaces 8:25496–25507

    Article  Google Scholar 

  50. Fang MS, Shi FH, Chen YH (2016) Unidirectional all-optical absorption switch based on optical Tamm state in nonlinear plasmonic waveguide. Plasmonics 11:197–203

    Article  Google Scholar 

  51. Liu PB, Huang Y, Zhang X (2014) Superparamagnetic Fe3O4 nanoparticles on graphene-polyaniline: synthesis, characterization and their excellent electromagnetic absorption properties. J Alloys Compd 596:25–31

    Article  Google Scholar 

  52. Han MK, Yin XW, Kong L, Li M, Duan WY, Zhang LT et al (2014) Graphene-wrapped ZnO hollow spheres with enhanced electromagnetic wave absorption properties. J Mater Chem A 2:16403–16409

    Article  Google Scholar 

  53. Feng W, Wang YM, Chen JC, Wang L, Guo LX, Ouyang JH et al (2016) Reduced graphene oxide decorated with in situ growing ZnO nanocrystals: facile synthesis and enhanced microwave absorption properties. Carbon 108:52–60

    Article  Google Scholar 

  54. Duong PHH, Nunes SP, Chung TS (2016) Dual-skinned polyamide/poly(vinylidene fluoride)/cellulose acetate membranes with embedded woven. J Membr Sci 520:840–849

    Article  Google Scholar 

  55. Chen TT, Deng F, Zhu J, Chen CF, Sun GB, Ma SL et al (2012) Hexagonal and cubic Ni nanocrystals grown on graphene: phase-controlled synthesis, characterization and their enhanced microwave absorption properties. J Mater Chem 22:15190–15197

    Article  Google Scholar 

  56. Kong L, Yin X, Zhang Y, Yuan X, Li Q, Ye F et al (2013) Electromagnetic wave absorption properties of reduced graphene oxide modified by maghemite colloidal nanoparticle clusters. J Phys Chem C 117:19701–19711

    Article  Google Scholar 

  57. Hosseini SH, Mohseni SH, Asadnia A, Kerdari H (2011) Synthesis and microwave absorbing properties of polyaniline/MnFe2O4 nanocomposite. J Alloys Compd 509:4682–4687

    Article  Google Scholar 

  58. Liu XY, Lv YL, Zhuang QX, Li YM, Zhang SD, Lan FX (2016) Polybenzobisoxazoles-based nanocomposites with high microwave absorption performance and excellent thermal stability. Polymer 99:605–613

    Article  Google Scholar 

  59. Luo JH, Shen P, Yao W, Jiang CF, Xu JG (2016) Synthesis, characterization, and microwave absorption properties of reduced graphene oxide/strontium ferrite/polyaniline nanocomposites. Nanoscale Res Lett 11:141–154

    Article  Google Scholar 

  60. He Z, Qi SH, Zhong XL, Ma H, Wang P, Qiu H (2015) Preparation and microwave-absorbing properties of silver-coated strontium ferrite with polyaniline via in situ polymerization. J Alloys Compd 621:194–200

    Article  Google Scholar 

  61. Micheli D, Apollo C, Pastore R, Marchetti M (2010) X-Band microwave characterization of carbon-based nanocomposite material, absorption capability comparison and RAS design simulation. Compos Sci Technol 70:400–409

    Article  Google Scholar 

  62. Wu F, Xie A, Sun M, Wang Y, Wang M (2015) Reduced graphene oxide (RGO) modified spongelike polypyrrole (PPy) aerogel for excellent electromagnetic absorption. J Mater Chem A 3:14358–14369

    Article  Google Scholar 

  63. Guo J, Wang X, Miao P, Liao X, Zhang W, Shi B (2012) One-step seeding growth of controllable Ag@Ni core-shell nanoparticles on skin collagen fiber with introduction of plant tannin and their application in high-performance microwave absorption. J Mater Chem 22:11933–11942

    Article  Google Scholar 

  64. Liu P, Yao Z, Zhou J, Yang Z, Kong LB (2016) Small magnetic Co-doped NiZn ferrite/graphene nanocomposites and their dual-region microwave absorption performance. J Mater Chem C 4:9738–9749

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Nature Science Foundation of China (21671001, 21371003 and 51402002), Lab for Clean Energy and Green Catalysis of Anhui University and Anhui Province Key Laboratory of Environment-Friendly Polymer Materials.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hui Zhang or Yuhua Shen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1474 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, P., Miao, J., Cao, J. et al. Facile synthesis and excellent electromagnetic wave absorption properties of flower-like porous RGO/PANI/Cu2O nanocomposites. J Mater Sci 52, 13078–13090 (2017). https://doi.org/10.1007/s10853-017-1418-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1418-6

Keywords

Navigation